【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為橢圓的參數(shù)方程為在以坐標(biāo)原點為極點, 軸正半軸為極軸建立的極坐標(biāo)系中,點的坐標(biāo)為.
(1)將點的坐標(biāo)化為直角坐標(biāo)系下的坐標(biāo),橢圓的參數(shù)方程化為普通方程;
(2)直線與橢圓交于, 兩點,求的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左頂點為,右焦點為, 為原點, , 是軸上的兩個動點,且,直線和分別與橢圓交于, 兩點.
(Ⅰ)求的面積的最小值;
(Ⅱ)證明: , , 三點共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三個臭皮匠頂上一個諸葛亮,能頂?shù)蒙蠁?在一次有關(guān)“三國演義”的知識競賽中,三個臭皮匠A、B、C能答對題目的概率分別為P(A)=,P(B)=,P(C)=,諸葛亮D能答對題目的概率為P(D)=,如果將三個臭皮匠A、B、C組成一組與諸葛亮D比賽,答對題目多者為勝方,問哪方勝?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形, 底面, ,過點的平面與棱, , 分別交于點, , (, , 三點均不在棱的端點處).
(Ⅰ)求證:平面平面;
(Ⅱ)若平面,求的值;
(Ⅲ)直線是否可能與平面平行?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)若,求不等式的解集;
(2)若方程有三個不同的解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小組共10人,利用假期參加義工活動,已知參加義工活動1次的有2人,2次的有4人,3次的有4人.現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會.
(1)設(shè)為事件“選出的2人參加義工活動次數(shù)之和為4”,求事件發(fā)生的概率;
(2)設(shè)為選出的2人參加義工活動次數(shù)之差的絕對值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)P是圓上的動點,點D是P在x軸上的投影,M為線段PD上一點,且,
(1)當(dāng)P在圓上運動時,求點M的軌跡C的方程;
(2)求過點(3,0)且斜率為的直線被軌跡C所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠需要確定加工某大型零件所花費的時間,連續(xù)4天做了4次統(tǒng)計,得到的數(shù)據(jù)如下:
零件的個數(shù)(個) | 2 | 3 | 4 | 5 |
加工的時間(小時) | 2.5 | 3 | 4 | 5.5 |
(1)在直角坐標(biāo)系中畫出以上數(shù)據(jù)的散點圖,求出關(guān)于的回歸方程,并在坐標(biāo)系中畫出回歸直線;
(2)試預(yù)測加工10個零件需要多少時間?
參考公式:兩個具有線性關(guān)系的變量的一組數(shù)據(jù):,
其回歸方程為,其中
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com