【題目】已知橢圓,如圖所示點(diǎn)為橢圓上任意三點(diǎn).

Ⅰ)若,是否存在實(shí)數(shù),使得代數(shù)式為定值.若存在,求出實(shí)數(shù)的值;若不存在,說(shuō)明理由.

Ⅱ)若,求三角形面積的最大值;

Ⅲ)滿足(Ⅱ),且在三角形面積取得最大值的前提下,若線段與橢圓長(zhǎng)軸和短軸交于點(diǎn)不是橢圓的頂點(diǎn)).判斷四邊形的面積是否為定值.若是,求出定值;若不是,說(shuō)明理由.

【答案】1,2132

【解析】試題分析:(1)將坐標(biāo)代入橢圓方程,根據(jù),消去(2)由,得聯(lián)立直線方程與橢圓方程,利用韋達(dá)定理以及弦長(zhǎng)公式求AB,根據(jù)點(diǎn)到直線距離公式求三角形高,再代入三角形面積公式,最后根據(jù)基本不等式求最值,(3)先求E,F坐標(biāo),再根據(jù)四邊形面積公式求面積,計(jì)算結(jié)果為定值即可.

試題解析:Ⅰ)由于,且

得:

所以,即

故,存在實(shí)數(shù)使得

Ⅱ)當(dāng)直線斜率不存在時(shí),可設(shè)為;

聯(lián)立方程組,得;

,得,即, ;

當(dāng)直線斜率存在時(shí),可設(shè)為;

聯(lián)立方程組,得;

,得,

;

等號(hào)成立時(shí), ,即

所以的最大值為1

取得最大值時(shí), ,此時(shí)直線與坐標(biāo)軸的交點(diǎn)恰好分別是橢圓長(zhǎng)軸和短軸各一個(gè)端點(diǎn);

不妨取, ,若線段與橢圓長(zhǎng)軸和短軸交于點(diǎn)不是橢圓與坐標(biāo)軸的交點(diǎn)).

此時(shí)點(diǎn)定在第三象限,即;

直線的方程為,令,得

同理,得

四邊形的面積為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某省各景點(diǎn)在大眾中的熟知度,隨機(jī)對(duì)15~65歲的人群抽樣了人,回答問(wèn)題“某省有哪幾個(gè)著名的旅游景點(diǎn)?”統(tǒng)計(jì)結(jié)果如下圖表

組號(hào)

分組

回答正確

的人數(shù)

回答正確的人數(shù)

占本組的頻率

第1組

[15,25)

0.5

第2組

[25,35)

18

第3組

[35,45)

0.9

第4組

[45,55)

9

0.36

第5組

[55,65]

3

(1)分別求出的值;

(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?

(3)在(2)抽取的6人中隨機(jī)抽取2人,求所抽取的人中恰好沒(méi)有第3組人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△中,,分別為,的中點(diǎn),的中點(diǎn),將△沿折起到△的位置,使得平面平面,如圖2.

(Ⅰ)求證:;

(Ⅱ)求直線和平面所成角的正弦值

(Ⅲ)線段上是否存在點(diǎn),使得直線所成角的余弦值為?若存在,求出的值;若不存在,說(shuō)明理由

圖1 圖2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C1:x2+y2=b2與橢圓C2:=1(a>b>0),若在橢圓C2上存在一點(diǎn)P,使得由點(diǎn)P所作的圓C1的兩條切線互相垂直,則橢圓C2的離心率的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市AB,C,D四所中學(xué)報(bào)名參加某高校2015年自主招生考試的學(xué)生人數(shù)如下表所示:

中學(xué)

A

B

C

D

人數(shù)

40

30

10

20

該市教委為了解參加考試的學(xué)生的學(xué)習(xí)狀況,采用分層抽樣的方法從四所中學(xué)報(bào)名參加考試的學(xué)生中隨機(jī)抽取50名參加問(wèn)卷調(diào)查.A,B,C,D四所中學(xué)抽取的學(xué)生人數(shù)分別為(

A.15,20,10,5B.15,20,5,10

C.20,1510,5D.2015,5,10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù)是自然對(duì)數(shù)的底數(shù)).

Ⅰ)若,證明:曲線沒(méi)有經(jīng)過(guò)點(diǎn)的切線;

Ⅱ)若函數(shù)在其定義域上不單調(diào),求的取值范圍;

Ⅲ)是否存在正整數(shù),當(dāng)時(shí),函數(shù)的圖象在軸的上方,若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱錐的三條側(cè)棱, 兩兩垂直, 為等邊三角形, 內(nèi)部一點(diǎn),點(diǎn)的延長(zhǎng)線上,且

Ⅰ)證明: ;

Ⅱ)證明: ;

,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為2,PBC的中點(diǎn),Q為線段上的動(dòng)點(diǎn),過(guò)點(diǎn)A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是______(寫(xiě)出所有正確命題的編號(hào)).

①當(dāng)時(shí),S為四邊形;②當(dāng)時(shí),S為等腰梯形;③當(dāng)時(shí),S的交點(diǎn)R滿足;④當(dāng)時(shí),S為五邊形;⑤當(dāng)時(shí),S的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】治理大氣污染刻不容緩,根據(jù)我國(guó)分布的《環(huán)境空氣質(zhì)量數(shù)(AQI)技術(shù)規(guī)定》:空氣質(zhì)量指數(shù)劃分階為0~50、51~100、101~150、151~200、201~300和大于300六級(jí),對(duì)應(yīng)于空氣質(zhì)量指數(shù)的六個(gè)級(jí)別,指數(shù)越大,級(jí)別越高,說(shuō)明污染越嚴(yán)重,對(duì)人體健康的影響也越明顯.專(zhuān)家建議:當(dāng)空氣質(zhì)量指數(shù)小于時(shí),可以戶外運(yùn)動(dòng);空氣質(zhì)量指數(shù)及以上,不適合進(jìn)行旅游等戶外活動(dòng),以下是某市月中旬的空氣質(zhì)量指數(shù)情況:

時(shí)間

11日

12日

13日

14日

15日

16日

17日

18日

19日

20日

AQI

149

143

251

254

138

55

69

102

243

269

(1)求月中旬市民不適合進(jìn)行戶外活動(dòng)的概率;

(2)一外地游客在月中旬來(lái)該市旅游,想連續(xù)游玩兩天,求適合旅游的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案