【題目】已知函數(shù)f(x)= sinx+cosωx(ω>0)的圖象與x軸交點的橫坐標(biāo)依次構(gòu)成一個公差為 的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移 個單位,得到函數(shù)g(x)的圖象,則(
A.g(x)是奇函數(shù)
B.g(x)關(guān)于直線x=﹣ 對稱
C.g(x)在[ , ]上是增函數(shù)
D.當(dāng)x∈[ ]時,g(x)的值域是[2,1]

【答案】D
【解析】解:f(x)= sinx+cosωx(ω>0),
化簡得:f(x)=2sin(x+ ),
∵圖象與x軸交點的橫坐標(biāo)依次構(gòu)成一個公差為 的等差數(shù)列,可知周期為π
∴T=π= ,解得ω=2.
那么:f(x)=2sin(2x+ ),圖象沿x軸向左平移 個單位,得:2sin[2(x+ )+ ]=2cos2x.
∴g(x)=2cos2x,故g(x)是偶函數(shù),在區(qū)間[0, ]單調(diào)減函數(shù).所以A,C不對.
對稱軸方程為x= (k=Z),檢驗B不對.
當(dāng)x∈[ , ]時,那么2x∈[ , ],g(x)的最大值為1,最小值為﹣2,故值域為[﹣2,1].D正確.
故選:D.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)是定義在R上的偶函數(shù),當(dāng)x≥0時,fx=x2–2x+2

1)求函數(shù)fx)的解析式;

2)當(dāng)x[mn]時,fx)的取值范圍為[2m,2n],試求實數(shù)mn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某市日至日的空氣質(zhì)量指數(shù)趨勢圖,某人隨機選擇日至日中的某一天到達該市,并停留天.

(1)求此人到達當(dāng)日空氣質(zhì)量指數(shù)大于的概率;

(2)設(shè)是此人停留期間空氣質(zhì)量指數(shù)小于的天數(shù),求的分布列與數(shù)學(xué)期望;

(3)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCDABCD的棱長為a,連接AC,AD,AB,BD,BC,CD,得到一個三棱錐.求:

(1)三棱錐ABCD的表面積與正方體表面積的比值;

(2)三棱錐ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某貧困地區(qū)有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450戶,為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實施“精準(zhǔn)扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬元)

(I)應(yīng)收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?

(Ⅱ)根據(jù)這150個樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為, , , ,,.如果將頻率率視為概率,估計該地區(qū)2017年家庭收入超過1.5萬元的概率;

(Ⅲ)樣本數(shù)據(jù)中,由5戶山區(qū)家庭的年收入超過2萬元,請完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有90%的把握認為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

超過2萬元

不超過2萬元

總計

平原地區(qū)

山區(qū)

5

總計

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張坐標(biāo)紙上已作出圓及點,折疊此紙片,使與圓周上某點重合,每次折疊都會留下折痕,設(shè)折痕與直線的交點為,令點的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與軌跡交于、兩點,且直線與以為直徑的圓相切,若,求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線經(jīng)過點,且圓上到直線距離為的點恰好有個,滿足條件的直線有( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象過點.

(1)求的值并求函數(shù)的值域;

(2)若關(guān)于的方程有實根,求實數(shù)的取值范圍;

(3)若函數(shù),則是否存在實數(shù),使得函數(shù)的最大值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小張經(jīng)營某一消費品專賣店,已知該消費品的進價為每件40元,該店每月銷售量(百件)與銷售單價x(元/件)之間的關(guān)系用下圖的一折線表示,職工每人每月工資為1000元,該店還應(yīng)交付的其它費用為每月10000元.

(1)把y表示為x的函數(shù);

(2)當(dāng)銷售價為每件50元時,該店正好收支平衡(即利潤為零),求該店的職工人數(shù);

(3)若該店只有20名職工,問銷售單價定為多少元時,該專賣店可獲得最大月利潤?(注:利潤=收入-支出)

查看答案和解析>>

同步練習(xí)冊答案