【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(2n+1)an+2n+1,數(shù)列{bn}的前n項(xiàng)和為Tn.求滿足不等式>2010的n的最小值.
【答案】(1)an=2n-1,n∈N*;(2)n的最小值為10.
【解析】試題分析:本題屬于基礎(chǔ)題.對(duì)已知條件,用代替得,兩式相減可得,湊配得,由此可證得是等比數(shù)列,從而求出通項(xiàng)公式,這是已知數(shù)列前項(xiàng)和與項(xiàng)之間關(guān)系的一般處理方法;(2)由(1)可得,采用錯(cuò)位相減法可求出其前項(xiàng)和 ,不等式>2 010就轉(zhuǎn)化為,可知n的最小值是10.
試題解析:(1)因?yàn)?/span>Sn+n=2an,所以Sn-1=2an-1-(n-1)(n≥2,n∈N*).兩式相減,得an=2an-1+1.
所以an+1=2(an-1+1)(n≥2,n∈N*),所以數(shù)列{an+1}為等比數(shù)列.
因?yàn)?/span>Sn+n=2an,令n=1得a1=1.
a1+1=2,所以an+1=2n,所以an=2n-1.
(2)因?yàn)?/span>bn=(2n+1)an+2n+1,所以bn=(2n+1)·2n.
所以Tn=3×2+5×22+7×23+…+(2n-1)·2n-1+(2n+1)·2n, ①
2Tn=3×22+5×23+…+(2n-1)·2n+(2n+1)·2n+1, ②
①-②,得-Tn=3×2+2(22+23+…+2n)-(2n+1)·2n+1
=6+2×-(2n+1)·2n+1
=-2+2n+2-(2n+1)·2n+1=-2-(2n-1)·2n+1.
所以Tn=2+(2n-1)·2n+1.
若>2 010,
則>2 010,即2n+1>2 010.
由于210=1 024,211=2 048,所以n+1≥11,即n≥10.
所以滿足不等式>2 010的n的最小值是10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是: (是參數(shù)).
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的參數(shù)方程化為普通方程;
(Ⅱ)若直線l與曲線C相交于A、B兩點(diǎn),且,試求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣2x﹣8≤0},B={x| <0},U=R.
(1)求A∪B;
(2)求(UA)∩B;
(3)如果C={x|x﹣a>0},且A∩C≠,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)求函數(shù)的對(duì)稱軸方程;
(II)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)為原來的2倍,然后再向左平移個(gè)單位,得到函數(shù)的圖象.若分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2,c=4,且,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線 與橢圓 有且只有一個(gè)公共點(diǎn)
.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若直線 交C于A,B兩點(diǎn),且PA⊥PB,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的解析式滿足 .
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)a=1時(shí),試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性,并加以證明;
(3)當(dāng)a=1時(shí),記函數(shù) ,求函數(shù)g(x)在區(qū)間 上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的直角坐標(biāo)方程,并指出其表示何種曲線;
(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,
試求當(dāng)時(shí), 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,底面為矩形, , , , , 為棱上一點(diǎn),平面與棱交于點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求證: ;
(Ⅲ)若,試問平面是否可能與平面垂直?若能,求出值;若不能,說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com