【題目】在正方體ABCD-A1B1C1D1中,點M、N分別在AB1、BC1上,且AM=AB1,BN=BC1,則下列結(jié)論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正確命題的個數(shù)是( )
A.1B.2C.3D.4
【答案】B
【解析】
由題意在四條棱A1A,B1B,C1C,D1D上分別取點G,F,E,H四點,使AGA1A,BFB1B,CEC1C,DHD1D,得到平面GFEH,則點M,N在與平面A1B1C1D1平行的平面GFEH中.利用線面垂直的性質(zhì)判斷①正確;利用平行公理判斷②錯誤;利用面面平行的性質(zhì)判斷③正確;利用面面平行以及線線垂直的性質(zhì)判斷④錯誤.
在正方體ABCD﹣A1B1C1D1的四條棱A1A,B1B,C1C,D1D上分別取點G,F,E,H四點,
使AGA1A,BFB1B,CEC1C,DHD1D,連接GF,FE,EH,HG,
∵點M、N分別在AB1、BC1上,且AMAB1,BNBC1,
∴M在線段GF上,N點在線段FE上.且四邊形GFEH為正方形,平面GFEH∥平面A1B1C1D1,
∵AA1⊥平面A1B1C1D1,∴AA1⊥平面GFEH,
∵MN平面GFEH,∴AA1⊥MN,故①正確;
∵A1C1∥GE,而GE與MN不平行,∴A1C1與MN不平行,故②錯誤;
∵平面GFEH∥平面A1B1C1D1,MN平面GFEH,∴MN∥平面A1B1C1D1,故③正確;
∵B1D1∥FH,FH平面GFEH,MN平面GFEH,且MN與FH不垂直,∴B1D1與MN不垂直,故④錯誤.
∴正確命題只有①③.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭為了解冬季用電量(度)與氣溫之間的關(guān)系,隨機統(tǒng)計了某5天的用電量與當(dāng)天氣溫,并制作了對照表,經(jīng)過統(tǒng)計分析,發(fā)現(xiàn)氣溫在一定范圍內(nèi)時,用電量與氣溫具有線性相關(guān)關(guān)系:
0 | 1 | 2 | 3 | 4 | |
(度) | 15 | 12 | 11 | 9 | 8 |
(1)求出用電量關(guān)于氣溫的線性回歸方程;
(2)在這5天中隨機抽取兩天,求至少有一天用電量低于10(度)的概率.
(附:回歸直線方程的斜率和截距的最小二乘法估計公式為,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上為增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個不同的極值點,記作,,且,證明:(為自然對數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,已知平面,為的中點,,過點作于,連接,,.
(1)求證:平面平面;
(2)若直線與平面所成角的正切值為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,點M、N分別在AB1、BC1上,且AM=AB1,BN=BC1,則下列結(jié)論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正確命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由半圓和部分拋物線合成的曲線稱為“羽毛球開線”,曲線與軸有兩個焦點,且經(jīng)過點
(1)求的值;
(2)設(shè)為曲線上的動點,求的最小值;
(3)過且斜率為的直線與“羽毛球形線”相交于點三點,問是否存在實數(shù)使得?若存在,求出的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知直線l上兩點M,N的極坐標分別為(2,0),(),圓C的參數(shù)方程(θ為參數(shù)).
(Ⅰ)設(shè)P為線段MN的中點,求直線OP的平面直角坐標方程;
(Ⅱ)判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某游戲公司對今年新開發(fā)的一些游戲進行評測,為了了解玩家對游戲的體驗感,研究人員隨機調(diào)查了300名玩家,對他們的游戲體驗感進行測評,并將所得數(shù)據(jù)統(tǒng)計如圖所示,其中.
(1)求這300名玩家測評分數(shù)的平均數(shù);
(2)由于該公司近年來生產(chǎn)的游戲體驗感較差,公司計劃聘請3位游戲?qū)<覍τ螒蜻M行初測,如果3人中有2人或3人認為游戲需要改進,則公司將回收該款游戲進行改進;若3人中僅1人認為游戲需要改進,則公司將另外聘請2位專家二測,二測時,2人中至少有1人認為游戲需要改進的話,公司則將對該款游戲進行回收改進.已知該公司每款游戲被每位專家認為需要改進的概率為,且每款游戲之間改進與否相互獨立.
(i)對該公司的任意一款游戲進行檢測,求該款游戲需要改進的概率;
(ii)每款游戲聘請專家測試的費用均為300元/人,今年所有游戲的研發(fā)總費用為50萬元,現(xiàn)對該公司今年研發(fā)的600款游戲都進行檢測,假設(shè)公司的預(yù)算為110萬元,判斷這600款游戲所需的最高費用是否超過預(yù)算,并通過計算說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com