【題目】已知函數(shù)

1)若,證明:;

2)若只有一個極值點,求的取值范圍.

【答案】1)詳見解析;(2.

【解析】

1)將代入,可得等價于,即,令,求出,可得的最小值,可得證;

(2)分,三種情況討論,分別對求導,其中又分①若三種情況,利用函數(shù)的零點存在定理可得a的取值范圍.

解:(1)當時,等價于,即;

設函數(shù),則

時,;當時,

所以上單調(diào)遞減,在單調(diào)遞增.

的最小值,

,故,即

(2),

設函數(shù) ,則;

(i)當時,,上單調(diào)遞增,

,取b滿足,則

上有唯一一個零點,

且當時,,時,

由于,所以的唯一極值點;

(ii)當時,上單調(diào)遞增,無極值點;

(iii)當時,若時,;若時,

所以上單調(diào)遞減,在單調(diào)遞增.

的最小值,

①若時,由于,故只有一個零點,所以,

因此上單調(diào)遞增,故不存在極值;

②若時,由于,即,所以,

因此上單調(diào)遞增,故不存在極值;

③若時,,即

,且,

而由(1)知,所以,

c滿足,則

有唯一一個零點,在有唯一一個零點;

且當,當時,,當時,

由于,故處取得極小值,在處取得極大值,

上有兩個極值點.

綜上,只有一個極值點時,的取值范圍是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某市有一條東西走向的公路l,現(xiàn)欲經(jīng)過公路l上的O處鋪設一條南北走向的公路m,在施工過程中發(fā)現(xiàn)O處的正北方向1百米的A處有一漢代古跡,為了保護古跡,該市委決定以A為圓心,1百米為半徑設立一個圓形保護區(qū),為了連通公路l,m,欲再新建一條公路PQ,點P,Q分別在公路l,m上(點P,Q分別在點O的正東、正北方向),且要求PQ與圓A相切.

(1)當點P距O處2百米時,求OQ的長;

(2)當公路PQ的長最短時,求OQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,。

(1)求的單調(diào)區(qū)間;

(2)討論零點的個數(shù);

(3)當時,設恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在其定義域內(nèi)有兩個不同的極值點.

(1)求的取值范圍;

(2)記兩個極值點為,且,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD-A1B1C1D1中,點M、N分別在AB1BC1上,且AM=AB1,BN=BC1,則下列結(jié)論:①AA1⊥MN②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,

正確命題的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某公司生產(chǎn)某款手機的年固定成本為40萬元,每生產(chǎn)1萬只還需另投入16萬元.設該公司一年內(nèi)共生產(chǎn)該款手機萬只并全部銷售完,每萬只的銷售收入為萬元,且

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬只)的函數(shù)解析式;

(2)當年產(chǎn)量為多少萬只時,該公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)若直線與曲線交于兩點,且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)將甲、乙兩個學生在高二的6次數(shù)學測試的成績(百分制)制成如圖所示的莖葉圖,進入高三后,由于改進了學習方法,甲、乙這兩個學生的考試成績預計同時有了大的提升:若甲(乙)的高二任意一次考試成績?yōu)?/span>,則甲(乙)的高三對應的考試成績預計為.

(1)試預測:高三6次測試后,甲、乙兩個學生的平均成績分別為多少?誰的成績更穩(wěn)定?

(2)若已知甲、乙兩個學生的高二6次考試成績分別由低到高進步的,定義為高三的任意一次考試后甲、乙兩個學生的當次成績之差的絕對值,求的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人進行象棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局數(shù)多者贏得比賽.假設每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨立.

1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;

2)用X表示比賽決出勝負時的總局數(shù),求隨機變量X的分布列和均值.

查看答案和解析>>

同步練習冊答案