【題目】已知函數(shù)

(1)曲線在點處的切線垂直于直線,求的值;

(2)若函數(shù)有兩個不同的零點,求的范圍.

【答案】(1)(2)

【解析】試題分析:(1)求得,根據(jù)在點處垂直于直線 ,得到

,即可求解實數(shù)的值;

(2)求得函數(shù)的導函數(shù),可分、三種情況討論,由函數(shù)有兩個不同的零點,列出不等式,即可求解的取值范圍.

試題解析:

(1),

因為在點處垂直于直線 ,

所以,解得

(2)函數(shù)的定義域為,

①當時, ,無零點;

②當時,,得

時,,函數(shù)單調(diào)遞減;

時,,函數(shù)單調(diào)遞增,

因為,

且當時,,當時,,

∴若函數(shù)有兩個不同的零點,需,即,

③當時,令,得

時,,函數(shù)單調(diào)遞減;

時,,函數(shù)單調(diào)遞增,

和當,均有,

若函數(shù)有兩個不同的零點,需時,即,

綜上,函數(shù)有兩個不同的零點,的取值范圍是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣的方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

附:的觀測值

(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

(2)在犯錯誤的概率不超過0.01的前提下是否可認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

(3)根據(jù)(2)的結(jié)論,能否提出更好的調(diào)查方法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,其離心率,點P為橢圓上的一個動點,面積的最大值為.

1)求橢圓的標準方程;

2)若A,B,C,D是橢圓上不重合的四個點,ACBD相交于點,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用獨立性檢驗的方法調(diào)查高中生性別與愛好某項運動是否有關(guān),通過隨機調(diào)查200名高中生是否愛好某項運動,利用列聯(lián)表,由計算可得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正確結(jié)論是(

A. 99%以上的把握認為“愛好該項運動與性別無關(guān)

B. 99%以上的把握認為“愛好該項運動與性別有關(guān)”

C. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別有關(guān)”

D. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的反函數(shù),定義:若對于給定實數(shù),函數(shù))互成反函數(shù),則稱滿足和性質(zhì),若函數(shù)互為反函數(shù),則稱滿足積性質(zhì)

1)判斷函數(shù)是否滿足“1和性質(zhì),并說明理由;

2)求所有滿足“2和性質(zhì)的一次函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,底面為平行四邊形,.

(1)求的長;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若,判斷函數(shù)的奇偶性,并加以證明

(2)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

(3)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從高三學生中抽取名學生參加數(shù)學競賽,成績(單位:分)的分組及各數(shù)據(jù)繪制的頻率分布直方圖如圖所示,已知成績的范圍是區(qū)間,且成績在區(qū)間的學生人數(shù)是人.

(1)求,的值;

(2)若從數(shù)學成績(單位:分)在的學生中隨機選取人進行成績分析.

①列出所有可能的抽取結(jié)果;

②設選取的人中,成績都在內(nèi)為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)yfx)是定義在[0,2]上的增函數(shù),且圖像是連續(xù)不斷的曲線,若f0)=M,f2)=NM0,N0),那么下列四個命題中是真命題的有(

A.必存在x[02],使得fxB.必存在x[0,2],使得fx

C.必存在x[0,2],使得fxD.必存在x[0,2],使得fx

查看答案和解析>>

同步練習冊答案