【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為。
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99%的把握認為喜愛打籃球與性別有關?說明你的理由。
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)根據(jù)在全部50人中隨機抽取1人抽到不愛打籃球的學生的概率為,,可得喜愛打籃球的學生的概率,從而得出喜愛打籃球的學生,即可得到列聯(lián)表;
(2)利用公式求得K2,與臨界值比較,即可得到結(jié)論.
試題解析:
(1) 因為在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為,所以喜愛打籃球的總?cè)藬?shù)為人,所以列聯(lián)表補充如下:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 15 | 5 | 20 |
女生 | 10 | 20 | 30 |
合計 | 25 | 25 | 50 |
(2)根據(jù)列聯(lián)表可得
因為
∴有99%以上的把握認為喜愛打籃球與性別有關.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,證明a>0,并利用二分法證明方程f(x)=0在區(qū)間[0,1]內(nèi)有兩個實根.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校學生研究性學習小組發(fā)現(xiàn),學生上課的注意力指標隨著聽課時間的變化而變化,老師講課開始時,學生的興趣激增;接下來學生的興趣將保持較理想的狀態(tài)一段時間,隨后學生的注意力開始分散.設 表示學生注意力指標,該小組發(fā)現(xiàn) 隨時間 (分鐘)的變化規(guī)律( 越大,表明學生的注意力越集中)如下: (,且 )
若上課后第 分鐘時的注意力指標為 ,回答下列問題:
(1)求 的值;
(2)上課后第 分鐘時和下課前 分鐘時比較,哪個時間注意力更集中?并請說明理由.
(3)在一節(jié)課中,學生的注意力指標至少達到 的時間能保持多長?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.
注: 年份代碼1-7分別對應年份2010-2016.
(1)由折線圖看出,可用線性回歸模型擬合和的關系,請用相關系數(shù)加以說明;
(2)建立關于的回歸方程,預測年該企業(yè)污水凈化量;
(3)請用數(shù)據(jù)說明回歸方程預報的效果.
附注: 參考數(shù)據(jù):;
參考公式:相關系數(shù),回歸方程中斜率和截距的最;
二乘法估汁公式分別為;
反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某人對東北一種松樹的生長進行了研究,收集了其高度h(米)與生長時間t(年)的相關數(shù)據(jù),選擇h=mt+b與h=loga(t+1)來刻畫h與t的關系,你認為哪個符合?并預測第8年的松樹高度.
t(年) | 1 | 2 | 3 | 4 | 5 | 6 |
h(米) | 0.6 | 1 | 1.3 | 1.5 | 1.6 | 1.7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點.
(1)求的長;
(2)在以為極點, 軸的正半軸為極軸建立極坐標系,設點的極坐標為,求點到線段中點的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com