【題目】已知命題函數(shù)內(nèi)恰有一個(gè)零點(diǎn);命題函數(shù)上是減函數(shù),若為真命題,則實(shí)數(shù)的取值范圍是___________

【答案】

【解析】

命題p:函數(shù)f(x)=2ax2﹣x﹣1(a≠0)在(0,1)內(nèi)恰有一個(gè)零點(diǎn),則f(0)f(1)<0,解得a范圍;命題q:函數(shù)y=x2﹣a在(0,+∞)上是減函數(shù),2﹣a<0,解得a范圍.由p且¬q為真命題,可得p與¬q都為真命題,即可得出.

命題p:函數(shù)f(x)=2ax2﹣x﹣1(a≠0)在(0,1)內(nèi)恰有一個(gè)零點(diǎn),

f(0)f(1)=﹣(2a﹣2)<0,解得a>1;

命題q:函數(shù)y=x2﹣a在(0,+∞)上是減函數(shù),2﹣a<0,解得a>2.

∴¬q:a(﹣∞,2].

∵p且¬q為真命題,∴p與¬q都為真命題,

解得1<a≤2.

則實(shí)數(shù)a的取值范圍是(1,2].

故答案為:(1,2].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,PC⊥底面ABCD,M是PD的中點(diǎn),AC⊥AD,BA⊥BC,PC=AC=2BC,∠ACD=∠ACB.
(1)求證:PA⊥CM;
(2)求二面角M﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為矩形,AB=2,AA1=2 ,D是AA1的中點(diǎn),BD與AB1交于點(diǎn)O,且CO⊥平面ABB1A1

(Ⅰ)證明:平面AB1C⊥平面BCD;
(Ⅱ)若OC=OA,△AB1C的重心為G,求直線GD與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩支排球隊(duì)進(jìn)行比賽,先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊(duì)獲勝的概率是 ,其余每局比賽甲隊(duì)獲勝的概率都是 .設(shè)各局比賽結(jié)果相互獨(dú)立.
(1)分別求甲隊(duì)3:0,3:1,3:2勝利的概率;
(2)若比賽結(jié)果3:0或3:1,則勝利方得3分,對方得0分;若比賽結(jié)果為3:2,則勝利方得2分,對方得1分,求乙隊(duì)得分X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|﹣|2x﹣3|.

(Ⅰ)在圖中畫出y=f(x)的圖象;
(Ⅱ)求不等式|f(x)|>1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=blnx+a(a>0,b>0)在x=1處的切線與圓(x﹣2)2+y2=4相交于A、B兩點(diǎn),并且弦長|AB|= 2 ,則 + 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))
(1)求曲線C的普通方程;
(2)在以O(shè)為極點(diǎn),x正半軸為極軸的極坐標(biāo)系中,直線l方程為 ρsin( ﹣θ)+1=0,已知直線l與曲線C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 =(sin2ωx,cos2ωx), =(cosφ,sinφ),其中|φ|< ,ω>0,函數(shù)f(x)= 的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)(即函數(shù)取得最大值的點(diǎn))為 ,在原點(diǎn)右側(cè)與x軸的第一個(gè)交點(diǎn)為
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)在△ABC中,角A′B′C的對邊分別是a′b′c′若f(C)=﹣1, ,且a+b=2 ,求邊長c.

查看答案和解析>>

同步練習(xí)冊答案