【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點(diǎn),為線段上的動(dòng)點(diǎn).
(1)求證:平面平面.
(2)試確定點(diǎn)的位置,使平面與平面所成的銳二面角為.
【答案】(1)見解析; (2)點(diǎn)F為BC中點(diǎn).
【解析】
(1)利用直線與平面垂直的性質(zhì)、判定定理以及平面與平面垂直的判定定理證明即可.(2)找建立空間直角坐標(biāo)系,分別求出平面與平面的法向量,利用數(shù)量積求出法向量間夾角,進(jìn)而得到二面角的余弦值。
(1)因?yàn)?/span>底面,平面,
所以.
因?yàn)?/span>為正方形,所以,
又因?yàn)?/span>,所以平面.
因?yàn)?/span>平面,
所以.
因?yàn)?/span>,為線段的中點(diǎn),
所以,
又因?yàn)?/span>,
所以平面
又因?yàn)?/span>平面,
所以平面平面.
(2)
因?yàn)?/span>底面,,以為坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸,軸,軸的正方向,建立如圖所示的空間直角坐標(biāo)系,
設(shè)正方形的邊長(zhǎng)為2,則,
所以
設(shè)點(diǎn)的坐標(biāo)為所以
設(shè)為平面的法向量,
則所以
取,則.
設(shè)為平面的法向量,
則所以
取,則.
因?yàn)槠矫?/span>與平面所成的銳二面角為,
所以,
解得,
故當(dāng)點(diǎn)為中點(diǎn)時(shí),平面與平面所成的銳二面角為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形中,、分別在線段、上,.沿著將折至如圖,使.
(1)若是線段的中點(diǎn),試在線段上確定點(diǎn)的位置,使面;
(2)在(1)條件下,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】足球起源于中國(guó)東周時(shí)期的齊國(guó),當(dāng)時(shí)把足球稱為“蹴鞠”.漢代蹴鞠是訓(xùn)練士兵的手段,制定了較為完備的體制.如專門設(shè)置了球場(chǎng),規(guī)定為東西方向的長(zhǎng)方形,兩端各設(shè)六個(gè)對(duì)稱的“鞠域”,也稱“鞠室”,各由一人把守.比賽分為兩隊(duì),互有攻守,以踢進(jìn)對(duì)方鞠室的次數(shù)決定勝負(fù).1970年以前的世界杯用球多數(shù)由舉辦國(guó)自己設(shè)計(jì),所以每一次球的外觀都不同,拼塊的數(shù)目如同擲骰子一樣沒準(zhǔn).自1970年起,世界杯官方用球選擇了三十二面體形狀的足球,沿用至今.如圖Ⅰ,三十二面體足球的面由邊長(zhǎng)相等的12塊正五邊形和20塊正六邊形拼接而成,形成一個(gè)近似的球體.現(xiàn)用邊長(zhǎng)為的上述正五邊形和正六邊形所圍成的三十二面體的外接球作為足球,其大圓圓周展開圖可近似看成是由4個(gè)正六邊形與4個(gè)正五邊形以及2條正六邊形的邊所構(gòu)成的圖形的對(duì)稱軸截圖形所得的線段,如圖Ⅱ,則該足球的表面積約為( )
參考數(shù)據(jù):,,,
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,直線與相交于,兩點(diǎn),當(dāng)時(shí),
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)在橢圓上是否存在點(diǎn),使得當(dāng)時(shí),的平分線總是平行于軸?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計(jì)了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如下圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為“短潛伏者”,潛伏期高于平均數(shù)的患者,稱為“長(zhǎng)潛伏者”.
(1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并計(jì)算出這500名患者中“長(zhǎng)潛伏者”的人數(shù);
(2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述500名患者中抽取300人,得到如下列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有97.5%的把握認(rèn)為潛伏期長(zhǎng)短與患者年齡有關(guān);
短潛伏者 | 長(zhǎng)潛伏者 | 合計(jì) | |
60歲及以上 | 90 | ||
60歲以下 | 140 | ||
合計(jì) | 300 |
(3)研究發(fā)現(xiàn),某藥物對(duì)新冠病毒有一定的抑制作用,需要在抽取的300人中分層選取7位60歲以下的患者做Ⅰ期臨床試驗(yàn),再?gòu)倪x取的7人中隨機(jī)抽取兩人做Ⅱ期臨床試驗(yàn),求兩人中恰有1人為“長(zhǎng)潛伏者”的概率.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營(yíng)一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對(duì)這四種水果進(jìn)行促銷:一次購(gòu)買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%.
①當(dāng)x=10時(shí),顧客一次購(gòu)買草莓和西瓜各1盒,需要支付__________元;
②在促銷活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)證明:(i);
(ii)對(duì)任意,對(duì)恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個(gè)小時(shí)抽取一件產(chǎn)品并對(duì)其某個(gè)質(zhì)量指標(biāo)進(jìn)行檢測(cè),一共抽取了件產(chǎn)品,并得到如下統(tǒng)計(jì)表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護(hù)次數(shù)與指標(biāo)有關(guān),具體見下表.
質(zhì)量指標(biāo) | |||
頻數(shù) | |||
一年內(nèi)所需維護(hù)次數(shù) |
(1)以每個(gè)區(qū)間的中點(diǎn)值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計(jì)該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));
(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再?gòu)?/span>件產(chǎn)品中隨機(jī)抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;
(3)已知該廠產(chǎn)品的維護(hù)費(fèi)用為元/次,工廠現(xiàn)推出一項(xiàng)服務(wù):若消費(fèi)者在購(gòu)買該廠產(chǎn)品時(shí)每件多加元,該產(chǎn)品即可一年內(nèi)免費(fèi)維護(hù)一次.將每件產(chǎn)品的購(gòu)買支出和一年的維護(hù)支出之和稱為消費(fèi)費(fèi)用.假設(shè)這件產(chǎn)品每件都購(gòu)買該服務(wù),或者每件都不購(gòu)買該服務(wù),就這兩種情況分別計(jì)算每件產(chǎn)品的平均消費(fèi)費(fèi)用,并以此為決策依據(jù),判斷消費(fèi)者在購(gòu)買每件產(chǎn)品時(shí)是否值得購(gòu)買這項(xiàng)維護(hù)服務(wù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com