已知t∈R,圓C:x2+y2-2tx-2t2y+4t-4=0.

(1)若圓C的圓心在直線x-y+2=0上,求圓C的方程;

(2)圓C是否過定點(diǎn)?如果過定點(diǎn),求出定點(diǎn)的坐標(biāo);如果不過定點(diǎn),說明理由.

 

(1)x2+y2+2x-2y-8=0或x2+y2-4x-8y+4=0(2)過定點(diǎn)(2,0).

【解析】(1)配方得(x-t)2+(y-t2)2=t4+t2-4t+4,其圓心C(t,t2).依題意t-t2+2=0?t=-1或2.

即x2+y2+2x-2y-8=0或x2+y2-4x-8y+4=0為所求方程.

(2)整理圓C的方程為(x2+y2-4)+(-2x+4)t+(-2y)·t2=0,令?

故圓C過定點(diǎn)(2,0).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時(shí)練習(xí)卷(解析版) 題型:解答題

設(shè)A、B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),橢圓長半軸的長等于焦距,且直線x=4是它的右準(zhǔn)線.

(1)求橢圓的方程;

(2)設(shè)P為橢圓右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線BP與橢圓相交于兩點(diǎn)B、N,求證:∠NAP為銳角.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第5課時(shí)練習(xí)卷(解析版) 題型:解答題

求半徑為4,與圓x2+y2-4x-2y-4=0相切,且和直線y=0相切的圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時(shí)練習(xí)卷(解析版) 題型:填空題

若直線l:ax+by+4=0(a>0,b>0)始終平分圓C:x2+y2+8x+2y+1=0,則ab的最大值為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1,動(dòng)點(diǎn)M到圓C的切線長與|MQ|的比等于.求動(dòng)點(diǎn)M的軌跡方程,并說明它表示什么.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時(shí)練習(xí)卷(解析版) 題型:填空題

以兩點(diǎn)A(-3,-1)和B(5,5)為直徑端點(diǎn)的圓的方程是_________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

與直線3x-4y+5=0關(guān)于x軸對(duì)稱的直線方程為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

兩平行直線x+3y-4=0與2x+6y-9=0的距離為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第10課時(shí)練習(xí)卷(解析版) 題型:填空題

已知雙曲線E的中心為原點(diǎn),F(xiàn)(3,0)是E的焦點(diǎn),過F的直線l與E相交于A、B兩點(diǎn),且AB的中點(diǎn)為N(-12,-15),則E的方程為____________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案