設(shè)A、B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),橢圓長(zhǎng)半軸的長(zhǎng)等于焦距,且直線x=4是它的右準(zhǔn)線.

(1)求橢圓的方程;

(2)設(shè)P為橢圓右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線BP與橢圓相交于兩點(diǎn)B、N,求證:∠NAP為銳角.

 

(1)=1(2)見(jiàn)解析

【解析】(1)【解析】
依題意,得解得從而b=,故橢圓的方程為=1.

(2)證明:由(1)得A(-2,0),B(2,0),設(shè)N(x0,y0),

∵N點(diǎn)在橢圓上,∴(4-).又N點(diǎn)異于頂點(diǎn)A、B,

∴-2<x0<2,y0≠0.由P、B、N三點(diǎn)共線可得P,從而=(x0+2,y0),,則·=6x0+12+=6x0+12-(2+x0)=(x0+2).

∵x0+2>0,y0≠0,∴·>0,于是∠NAP為銳角.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

已知(1+ax)(1+x)5的展開(kāi)式中x2的系數(shù)為5,則a=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時(shí)練習(xí)卷(解析版) 題型:填空題

已知雙曲線=1(a>0,b>0)與拋物線y2=8x有一個(gè)公共的焦點(diǎn)F,且兩曲線的一個(gè)交點(diǎn)為P,若PF=5,則雙曲線的漸近線方程為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時(shí)練習(xí)卷(解析版) 題型:解答題

已知橢圓=1(a>b>0)的離心率e=,連結(jié)橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.

(1)求橢圓的方程;

(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(-a,0).若|AB|=,求直線l的傾斜角.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時(shí)練習(xí)卷(解析版) 題型:解答題

已知直線l經(jīng)過(guò)點(diǎn)(1,0)且一個(gè)方向向量d=(1,1).橢圓C:=1(m>1)的左焦點(diǎn)為F1.若直線l與橢圓C交于A,B兩點(diǎn),滿足·=0,求實(shí)數(shù)m的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時(shí)練習(xí)卷(解析版) 題型:填空題

已知F是橢圓C的一個(gè)焦點(diǎn),B是短軸的一個(gè)端點(diǎn),線段BF的延長(zhǎng)線交C于點(diǎn)D,且=2,則C的離心率為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第6課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的離心率為,以原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線x-y+2=0相切.

(1)求橢圓C的方程;

(2)已知點(diǎn)P(0,1),Q(0,2).設(shè)M、N是橢圓C上關(guān)于y軸對(duì)稱的不同兩點(diǎn),直線PM與QN相交于點(diǎn)T,求證:點(diǎn)T在橢圓C上.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第5課時(shí)練習(xí)卷(解析版) 題型:解答題

已知以點(diǎn)C(t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn).

(1)求證:△AOB的面積為定值;

(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M、N,若|OM|=|ON|,求圓C的方程;

(3)在(2)的條件下,設(shè)P、Q分別是直線l:x+y+2=0和圓C的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

已知t∈R,圓C:x2+y2-2tx-2t2y+4t-4=0.

(1)若圓C的圓心在直線x-y+2=0上,求圓C的方程;

(2)圓C是否過(guò)定點(diǎn)?如果過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);如果不過(guò)定點(diǎn),說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案