【題目】已知?jiǎng)訄A與軸相切,且與圓:外切;
(1)求動(dòng)圓圓心的軌跡的方程;
(2)若直線過定點(diǎn),且與軌跡交于、兩點(diǎn),與圓交于、兩點(diǎn),若點(diǎn)到直線的距離為,求的最小值.
【答案】(1)和
(2)
【解析】
(1)設(shè),根據(jù)兩圓外切的條件列方程,化簡后求得的軌跡的方程.
(2)設(shè)出直線的方程,利用直線和拋物線相交的弦長公式、直線和圓相交的弦長公式、點(diǎn)到直線的距離公式,求得,由此求得的表達(dá)式,利用換元法,結(jié)合基本不等式,求得的最小值.
圓,圓心為,半徑為.
(1)設(shè),則,討論的符號(hào)可知,動(dòng)圓圓心軌跡方程為和.
(2)注意到若直線平行于軸,則直線與拋物線沒有兩個(gè)交點(diǎn),因此可設(shè):.
聯(lián)立,得,得,.
故.
又圓心到直線的距離,從而.
從而,令,則.
.
令,則在上單調(diào)遞增,即.
因此當(dāng)時(shí),即時(shí)取最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹腻涹w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”(已知1丈為10尺)該鍥體的三視圖如圖所示,則該鍥體的體積為( )
A. 12000立方尺B. 11000立方尺
C. 10000立方尺D. 9000立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線交曲線于,兩點(diǎn),交曲線于,兩點(diǎn),求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓柱,底面半徑為1,高為2,是圓柱的一個(gè)軸截面,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn),其路徑最短時(shí)在側(cè)面留下的曲線記為:將軸截面繞著軸,逆時(shí)針旋轉(zhuǎn) 角到位置,邊與曲線相交于點(diǎn).
(1)當(dāng)時(shí),求證:直線平面;
(2)當(dāng)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校高一1000名學(xué)生的物理成績,隨機(jī)抽查了部分學(xué)生的期中考試成績,將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.
(1)估計(jì)該校高一學(xué)生物理成績不低于80分的人數(shù);
(2)若在本次考試中,規(guī)定物理成績?cè)?/span>m分以上(包括m分)的為優(yōu)秀,該校學(xué)生物理成績的優(yōu)秀率大約為18%,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,左、右頂點(diǎn)分別為、,過左焦點(diǎn)的直線交橢圓于、兩點(diǎn)(異于、兩點(diǎn)),當(dāng)直線垂直于軸時(shí),四邊形的面積為6.
(1)求橢圓的方程;
(2)設(shè)直線、的交點(diǎn)為;試問的橫坐標(biāo)是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)在圓上,且在第一象限,過作的切線交橢圓于兩點(diǎn),問: 的周長是否為定值?若是,求出定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)m=0時(shí),求曲線y=f(x)在x=1處的切線方程;
(Ⅱ)若函數(shù)f(x)的圖象在x軸的上方,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】武漢市政府為了給“世界軍運(yùn)會(huì)”營造良好交通環(huán)境,特招聘了一批交通協(xié)管員,這些協(xié)管員的年齡都在之間,按年齡情況對(duì)他們進(jìn)行統(tǒng)計(jì)得到的頻率分布直方圖如下,其中年齡在歲的有10人,歲的有45人.
(1)補(bǔ)全頻率分布直方圖,并估計(jì)協(xié)管員的年齡中位數(shù);
(2)為感謝年長的協(xié)管員的支持,利用分層抽樣的方法從年齡在的協(xié)管員中抽取5人,并從這5人中再抽取3人,各贈(zèng)送一份禮品,求僅有一人年齡在的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com