【題目】已知橢圓的左、右焦點分別為,是橢圓上一動點(與左、右頂點不重合)已知的內切圓半徑的最大值為,橢圓的離心率為.
(1)求橢圓C的方程;
(2)過的直線交橢圓于兩點,過作軸的垂線交橢圓與另一點(不與重合).設的外心為,求證為定值.
【答案】(1)(2)見解析
【解析】
(1)當面積最大時,最大,即點位于橢圓短軸頂點時,即可得到的值,再利用離心率求得,即可得答案;
(2)由題意知,直線的斜率存在,且不為0,設直線為,代入橢圓方程得.設,利用弦長公式求得,利用的垂直平分線方程求得的坐標,兩個都用表示,代入中,即可得答案.
(1)由題意知:,∴,∴.
設的內切圓半徑為,
則,
故當面積最大時,最大,即點位于橢圓短軸頂點時,
所以,把代入,解得:,
所以橢圓方程為.
(2)由題意知,直線的斜率存在,且不為0,設直線為,
代入橢圓方程得.
設,則,
所以的中點坐標為,
所以.
因為是的外心,所以是線段的垂直平分線與線段的垂直平分線的交點,的垂直平分線方程為,
令,得,即,所以
所以,所以為定值,定值為4.
科目:高中數學 來源: 題型:
【題目】已知P是圓F1:(x+1)2+y2=16上任意一點,F2(1,0),線段PF2的垂直平分線與半徑PF1交于點Q,當點P在圓F1上運動時,記點Q的軌跡為曲線C.
(1)求曲線C的方程;
(2)記曲線C與x軸交于A,B兩點,M是直線x=1上任意一點,直線MA,MB與曲線C的另一個交點分別為D,E,求證:直線DE過定點H(4,0).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦距為4,且過點.
(1)求橢圓的標準方程;
(2)設為橢圓上一點,過點作軸的垂線,垂足為,取點,連接,過點作的垂線交軸于點,點是點關于軸的對稱點,作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex-ax-1(e為自然對數的底數),a>0.
(1)若函數f(x)恰有一個零點,證明:aa=ea-1;
(2)若f(x)≥0對任意x∈R恒成立,求實數a的取值集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大型工廠有6臺大型機器,在1個月中,1臺機器至多出現1次故障,且每臺機器是否出現故障是相互獨立的,出現故障時需1名工人進行維修,每臺機器出現故障的概率為.已知1名工人每月只有維修2臺機器的能力(若有2臺機器同時出現故障,工廠只有1名維修工人,則該工人只能逐臺維修,對工廠的正常運行沒有任何影響),每臺機器不出現故障或出現故障時能及時得到維修,就能使該廠獲得10萬元的利潤,否則將虧損2萬元.該工廠每月需支付給每名維修工人1萬元的工資.
(1)若每臺機器在當月不出現故障或出現故障時,有工人進行維修(例如:3臺大型機器出現故障,則至少需要2名維修工人),則稱工廠能正常運行.若該廠只有1名維修工人,求工廠每月能正常運行的概率;
(2)已知該廠現有2名維修工人.
(。┯浽搹S每月獲利為萬元,求的分布列與數學期望;
(ⅱ)以工廠每月獲利的數學期望為決策依據,試問該廠是否應再招聘1名維修工人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是正方形,AE⊥平面ABCD,PD∥AE,PD=AD=2EA=2,G,F,H分別為BE,BP,PC的中點.
(1)求證:平面ABE⊥平面GHF;
(2)求直線GH與平面PBC所成的角θ的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩個排球隊在采用局勝制排球決賽中相遇,已知每局比賽中甲獲勝的概率是.
(1)求比賽進行了局就結束的概率;
(2)若第局甲勝,兩隊又繼續(xù)進行了局結束比賽,求的分布列和數學期望
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com