【題目】恩施州某電影院共有1000個(gè)座位,票價(jià)不分等次,根據(jù)電影院的經(jīng)營(yíng)經(jīng)驗(yàn),當(dāng)每張票價(jià)不超過(guò)10元時(shí)、票可全部售出;當(dāng)票價(jià)高于10元時(shí),每提高1元,將有30張票不能售出,為了獲得更好的收入,需要給電影院一個(gè)合適的票價(jià),基本條件是:①為了方便找零和算賬,票價(jià)定為1元的整數(shù)倍.②影院放映一場(chǎng)電影的成本是4000元,票房收入必須高于成本,用x(元)表示每張票價(jià),用y(元)表示該電影放映一場(chǎng)的純收入(除去成本后的收入).
(1)求函數(shù)y=f(x)的解析式;
(2)票價(jià)定為多少時(shí),電影放映一場(chǎng)的純收入最大?
【答案】(1)y(x∈Z);(2)22元.
【解析】
(1)設(shè)每張票價(jià)為元,通過(guò)當(dāng)時(shí),求出,利用得,當(dāng)時(shí),求出,得到,寫(xiě)出函數(shù)的解析式.(2)利用分段函數(shù)的解析式分別求解函數(shù)的最值.
(1)設(shè)每張票價(jià)為x元
當(dāng)x≤10時(shí),y=1000x﹣4000,由1000x﹣4000>0得:x>4,又x是整數(shù),∴5≤x≤10,
當(dāng)x>10時(shí),y=[1000﹣30(x﹣10)]x﹣4000=﹣30x2+1300x﹣4000,
由﹣30x2+1300x﹣4000>0得:x<40,∴10<x≤40,
∴y (x∈Z);
(2)若x≤10,y=1000x﹣4000是增函數(shù),∴x=10時(shí),y有最大值6000,
若x>10,y=﹣30x2+1300x﹣4000,對(duì)稱(chēng)軸為x21,
又x是整數(shù),所以當(dāng)x=22時(shí),y最大,此時(shí)y=10080,
∴每張票價(jià)定為22元時(shí),放映一場(chǎng)的純收入最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過(guò)點(diǎn).點(diǎn)M(3,m)在雙曲線上.
(1)求雙曲線的方程;
(2)求證:;
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“日行一萬(wàn)步,健康你一生”的養(yǎng)生觀念已經(jīng)深入人心,由于研究性學(xué)習(xí)的需要,某大學(xué)生收集了手機(jī)“微信運(yùn)動(dòng)”團(tuán)隊(duì)中特定甲、乙兩個(gè)班級(jí)名成員一天行走的步數(shù),然后采用分層抽樣的方法按照,,,分層抽取了名成員的步數(shù),并繪制了如下尚不完整的莖葉圖(單位:千步);已知甲、乙兩班行走步數(shù)的平均值都是千步.
(1)求,的值;
(2)若估計(jì)該團(tuán)隊(duì)中一天行走步數(shù)少于千步的人數(shù)比處于千步的人數(shù)少人,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內(nèi)的總濃度. 藥物在人體內(nèi)發(fā)揮治療作用時(shí),該藥物的血藥濃度應(yīng)介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內(nèi)血藥濃度及相關(guān)信息如圖所示:
根據(jù)圖中提供的信息,下列關(guān)于成人使用該藥物的說(shuō)法中,不正確的是
A. 首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用
B. 每次服用該藥物1單位,兩次服藥間隔小于2小時(shí),一定會(huì)產(chǎn)生藥物中毒
C. 每間隔5.5小時(shí)服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用
D. 首次服用該藥物1單位3小時(shí)后,再次服用該藥物1單位,不會(huì)發(fā)生藥物中毒
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)工商局、消費(fèi)者協(xié)會(huì)在月號(hào)舉行了以“攜手共治,暢享消費(fèi)”為主題的大型宣傳咨詢(xún)服務(wù)活動(dòng),著力提升消費(fèi)者維權(quán)意識(shí).組織方從參加活動(dòng)的群眾中隨機(jī)抽取名群眾,按他們的年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
(Ⅰ)若電視臺(tái)記者要從抽取的群眾中選人進(jìn)行采訪,求被采訪人恰好在第組或第組的概率;
(Ⅱ)已知第組群眾中男性有人,組織方要從第組中隨機(jī)抽取名群眾組成維權(quán)志愿者服務(wù)隊(duì),求至少有兩名女性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,定點(diǎn),是圓上的一動(dòng)點(diǎn),線段的垂直平分線交半徑于點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)四邊形的四個(gè)頂點(diǎn)都在曲線上,且對(duì)角線、過(guò)原點(diǎn),若,求證:四邊形的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3(a>0且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的奇偶性;
(3)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>R,且的圖像過(guò)點(diǎn).
(1)求實(shí)數(shù)b的值;
(2)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使函數(shù)在R上的最大值為?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com