已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn).

(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點(diǎn)若拋物線上一點(diǎn)滿足,求的取值范圍.
(Ⅰ) ; (Ⅱ) .

試題分析:(Ⅰ) 由題意設(shè)拋物線的標(biāo)準(zhǔn)方程,把已知點(diǎn)代入解得拋物線的標(biāo)準(zhǔn)方程;(Ⅱ)先由直線與圓相切得圓心到直線的距離為圓的半徑,可得的關(guān)系式,在把直線方程與拋物線方程聯(lián)立方程組整理為關(guān)于的方程,利用判別式大于0求得的取值范圍,并設(shè)出交點(diǎn)的坐標(biāo),由根與系數(shù)的關(guān)系式和已知向量的關(guān)系式,把點(diǎn)的坐標(biāo)表示出來,再代入拋物線方程,把表示出來,從而可得的取值范圍.
試題解析:(Ⅰ) 設(shè)拋物線方程為, 由已知得:, 所以,
所以拋物線的標(biāo)準(zhǔn)方程為  .      4分
(Ⅱ) 因?yàn)橹本與圓相切, 所以  ,     6分
把直線方程代入拋物線方程并整理得:,   7分
, 得 ,               8分
設(shè), 則
,
,
,                               11分
因?yàn)辄c(diǎn)在拋物線上,所以,
,                 13分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024835988394.png" style="vertical-align:middle;" />或,所以  或
所以 的取值范圍為  .               15分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=kx+b與橢圓交于A、B兩點(diǎn),記△AOB的面積為S.

(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當(dāng)|AB|=2,S=1時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓直線與圓相切,且交橢圓兩點(diǎn),是橢圓的半焦距,,
(Ⅰ)求的值;
(Ⅱ)O為坐標(biāo)原點(diǎn),若求橢圓的方程;
(Ⅲ) 在(Ⅱ)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為A,B,動點(diǎn),直線AS,BS與直線分別交于M,N兩點(diǎn),求線段MN的長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓拋物線的焦點(diǎn)均在軸上,的中心和 的頂點(diǎn)均為坐標(biāo)原點(diǎn)從每條曲線上取兩個點(diǎn),將其坐標(biāo)記錄于下表中:










(Ⅰ)求分別適合的方程的點(diǎn)的坐標(biāo);
(Ⅱ)求的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,,以為圓心的圓相切于點(diǎn)的縱坐標(biāo)為,是圓軸除外的另一個交點(diǎn).
(I)求拋物線與圓的方程;
( II)已知直線交于兩點(diǎn),交于點(diǎn),且, 求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)雙曲線以橢圓的兩個焦點(diǎn)為焦點(diǎn),且雙曲線的一條漸近線是
(1)求雙曲線的方程;
(2)若直線與雙曲線交于不同兩點(diǎn),且都在以為圓心的圓上,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),是拋物線上相異兩點(diǎn),且滿足
(Ⅰ)若的中垂線經(jīng)過點(diǎn),求直線的方程;
(Ⅱ)若的中垂線交軸于點(diǎn),求的面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的一個頂點(diǎn)與兩個焦點(diǎn)構(gòu)成等邊三角形,則橢圓的離心率(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)為雙曲線的兩個焦點(diǎn),點(diǎn)在此雙曲線上,,如果此雙曲線的離心率等于,那么點(diǎn)軸的距離等于               

查看答案和解析>>

同步練習(xí)冊答案