精英家教網 > 高中數學 > 題目詳情

【題目】為了解一種植物的生長情況抽取一批該植物樣本測量高度(單位:cm),其頻率分布直方圖如圖所示.

(1)求該植物樣本高度的平均數x和樣本方差s2(同一組中的數據用該組區(qū)間的中點值作代表);

(2)假設該植物的高度Z服從正態(tài)分布N(μσ2),其中μ近似為樣本平均數xσ2近似為樣本方差s2,利用該正態(tài)分布求P(64.5<Z<96).

(附:=10.5.ZN(μσ2),P(μσZμσ)=0.682 6,P(μ-2σZμ+2σ)=0.954 4)

【答案】(1)75,110.

(2)0.8185.

【解析】

(1)根據頻率分布直方圖,每個矩形的中點橫坐標與該矩形的縱坐標相乘后求和,即可得到數據的平均數,利用方差公式可得方差;(2)根據正態(tài)分布各區(qū)間的概率的對稱性可計算出的值.

(1)x=55×0.1+65×0.2+75×0.35+85×0.3+95×0.05=75,

s2=(55-75)2×0.1+(65-75)2×0.2+(75-75)2×0.35+(85-75)2×0.3+(95-75)2×0.05=110.

(2)(1)知,ZN(75110)

從而P(64.5<Z<75)=×P(75-10.5<Z<75+10.5)=×0.682 6=0.341 3,

P(75<Z<96)=×P(75-2×10.5<Z<75+2×10.5)=×0.954 4=0.477 2

所以P(64.5<Z<96)=P(64.5<Z<75)+P(75<Z<96)=0.341 3+0.477 2=0.818 5.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】min(a,b)表示a,b中的最小值,執(zhí)行如圖所示的程序框圖,若輸入的a,b值分別為4,10,則輸出的min(a,b)值是(
A.0
B.1
C.2
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】規(guī)定:投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀.根據以往經驗某選手投擲一次命中8環(huán)以上的概率為 .現采用計算機做模擬實驗來估計該選手獲得優(yōu)秀的概率:用計算機產生0到9之間的隨機整數,用0,1表示該次投擲未在 8 環(huán)以上,用2,3,4,5,6,7,8,9表示該次投擲在 8 環(huán)以上,經隨機模擬試驗產生了如下 20 組隨機數: 907 966 191 925 271 932 812 458 569 683
031 257 393 527 556 488 730 113 537 989
據此估計,該選手投擲 1 輪,可以拿到優(yōu)秀的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國南宋數學家秦九韶(約公元1202﹣1261年)給出了求n(n∈N*)次多項式anxn+an﹣1xn﹣1+…+a1x+a0 , 當x=x0時的值的一種簡捷算法.該算法被后人命名為“秦九韶算法”,例如,可將3次多項式改寫為a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后進行求值.運行如圖所示的程序框圖,能求得多項式( )的值.
A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】4月23人是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動,為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調查,下面是根據調查結果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書謎”,低于60分鐘的學生稱為“非讀書謎”
(1)求x的值并估計全校3000名學生中讀書謎大概有多少?(經頻率視為頻率)

非讀書迷

讀書迷

合計

15

45

合計


(2)根據已知條件完成下面2×2的列聯表,并據此判斷是否有99%的把握認為“讀書謎”與性別有關? 附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從6雙不同手套中,任取4只,

(1)恰有1雙配對的取法是多少?

(2)沒有1雙配對的取法是多少?

(3)至少有1雙配對的取法是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一次考試中,5名同學的數學、物理成績如表所示:

學生

A

B

C

D

E

數學(x)

89

91

93

95

97

物理(y)

87

89

89

92

93

(1)根據表中數據,求物理分y關于數學分x的回歸方程,并試估計某同學數學考100分時,他的物理得分;

(2)要從4名數學成績在90分以上的同學中選出2名參加一項活動,以X表示選中的同學中物理成績高于90分的人數,試解決下列問題:

①求至少選中1名物理成績在90分以下的同學的概率;

②求隨機變變量X的分布列及數學期望

附:回歸方程:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在△ABC中,a,b,c分別為∠A,∠B,∠C的對邊,且滿足(2c﹣b)tanB=btanA.
(1)求A的大。
(2)求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果函數y=f(x)的導函數的圖象如圖所示,給出下列判斷:

①函數y=f(x)在區(qū)間(-3,-1)內單調遞增;②當x=2時,函數y=f(x)有極小值;

③函數y=f(x)在區(qū)間內單調遞增;④當時,函數y=f(x)有極大值.

則上述判斷中正確的是(  )

A. ①② B. ②③ C. ③④ D.

查看答案和解析>>

同步練習冊答案