【題目】已知f(1)=1,f(2)=3,f(3)=4,f(4)=7,f(5)=11,…,則f(10)=(
A.28
B.76
C.123
D.199

【答案】C
【解析】解:由題意可得,f(3)=f(1)+f(2),f(4)=f(2)+f(3),f(5)=f(3)+f(4),
則f(6)=f(4)+f(5)=18,f(7)=f(5)+f(6)=29,f(8)=f(6)+f(7)=47,
f(9)=f(8)+f(7)=76,f(10)=f(8)+f(9)=123,
故選:123.
【考點精析】認真審題,首先需要了解歸納推理(根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2+3x,若|x﹣a|≤1,則下列不等式一定成立的是(
A.|f(x)﹣f(a)|≤3|a|+3
B.|f(x)﹣f(a)|≤2|a|+4
C.|f(x)﹣f(a)|≤|a|+5
D.|f(x)﹣f(a)|≤2(|a|+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)在[0,7]上是增函數(shù),又f(7)=6,則f(x)(
A.在[﹣7,0]上是增函數(shù),且最大值是6
B.在[﹣7,0]上是減函數(shù),且最大值是6
C.在[﹣7,0]上是增函數(shù),且最小值是6
D.在[﹣7,0]上是減函數(shù),且最小值是6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c、d∈R,且a+b=c+d=1,ac+bd>1.求證:a、b、c、d中至少有一個是負數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x﹣4)=﹣f(x),且在區(qū)間[0,2]上是增函數(shù),則(
A.f(2)<f(5)<f(8)
B.f(5)<f(8)<f(2)
C.f(5)<f(2)<f(8)
D.f(8)<f(2)<f(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},則M∩N=(
A.{0,1,2}
B.{﹣1,0,1,2}
C.{﹣1,0,2,3}
D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|7<2x<33,x∈N},B={x|log3(x﹣1)<1},則A∩(RB)等于(
A.{4,5}
B.{3,4,5}
C.{x|3≤x<4}
D.{x|3≤x≤5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x)=f(2﹣x),且當x∈[0,1]時,f(x)=2x﹣m,則f(2107)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機變量ξ服從正態(tài)分布N(0,σ2),若P(ξ>2)=0.023,則P(﹣2<ξ≤2)=(
A.0.477
B.0.628
C.0.954
D.0.977

查看答案和解析>>

同步練習(xí)冊答案