精英家教網 > 高中數學 > 題目詳情

【題目】設k∈R,對任意的向量 , 和實數x∈[0,1],如果滿足 ,則有 成立,那么實數λ的最小值為(
A.1
B.k
C.
D.

【答案】C
【解析】解:當向量 = 時,可得向量 , 均為零向量,不等式成立;
當k=0時,即有 = ,則有 ,即為x| |≤λ| |,
即有λ≥x恒成立,由x≤1,可得λ≥1;
當k≠0時, ,由題意可得有 = | |,
當k>1時, >| |,
由| ﹣x |≤| |<| |,可得:
≤1,則有 ≥1,即λ≥k.
即有λ的最小值為
故選:C.
【考點精析】解答此題的關鍵在于理解向量的三角形法則的相關知識,掌握三角形加法法則的特點:首尾相連;三角形減法法則的特點:共起點,連終點,方向指向被減向量.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求曲線在點處的切線方程;

(2)討論函數的單調性;

(3)若函數處取得極小值,設此時函數的極大值為,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點O為線段BD的中點,設點P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是(

A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線E:y2=2px(p>0)的準線與x軸交于點K,過點K作圓C:(x﹣2)2+y2=1的兩條切線,切點為M,N,|MN|=
(1)求拋物線E的方程
(2)設A、B是拋物線E上分別位于x軸兩側的兩個動點,且 = (其中O為坐標原點)
①求證:直線AB必過定點,并求出該定點Q的坐標
②過點Q作AB的垂線與拋物線交于G、D兩點,求四邊形AGBD面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法中正確的是(  ).
A.已知F1(-4,0),F2(4,0),到F1,F2兩點的距離之和等于8的點的軌跡是橢圓
B.已知F1(-4,0),F2(4,0),到F1,F2兩點的距離之和為6的點的軌跡是橢圓
C.到F1(-4,0),F2(4,0)兩點的距離之和等于點M(5,3)到F1,F2的距離之和的點的軌跡是橢圓
D.到F1(-4,0),F2(4,0)兩點距離相等的點的軌跡是橢圓

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 C 的中心在坐標原點,焦點在 X 軸上,橢圓 C 上的點到焦點距離的最大值為3,最小值為1.
(1)求橢圓 C 的標準方程;
(2)若直線 與橢圓 C 相交于 A,B 兩點( A,B 不是左右頂點),且以 AB 為直徑的圖過橢圓 C 的右頂點.求證:直線 l 過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】判斷下列命題的真假:
(1)存在一個函數,既是偶函數又是奇函數;
(2)每一條線段的長度都能用正有理數來表示;
(3)存在一個實數x0,使得等式 成立;
(4)x∈R,x2-3x+2=0;
(5)x0∈R, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于函數,下列說法錯誤的是( )

A. 的極小值點 B. 函數有且只有1個零點

C. 存在正實數,使得恒成立 D. 對任意兩個正實數,且,若,則

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,已知曲線的參數方程為 為參數).以坐標原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.

(Ⅰ)當時,求曲線上的點到直線的距離的最大值;

(Ⅱ)若曲線上的所有點都在直線的下方,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案