【題目】已知橢圓的離心率為,橢圓上的點到右焦點的距離的最大值為3

(1)求橢圓的方程;

(2)若過橢圓的右焦點作傾斜角不為零的直線與橢圓交于兩點,設(shè)線段的垂直平分線在軸上的截距為,求的取值范圍.

【答案】(1)(2)

【解析】

1)根據(jù)心率為,橢圓上的點到右焦點的距離的最大值為3,結(jié)合性質(zhì) ,列出關(guān)于 、的方程組,求出 、即可得結(jié)果;(2)設(shè)出直線方程,與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理求出中點坐標(biāo),可得中垂線方程,令,得,分類討論,利用基本不等式可得結(jié)果.

1)由題意可得:,解得,所以.

所以橢圓的方程為.

2)當(dāng)斜率存在時,設(shè)直線的方程為

設(shè),,則中點,

消去,

所以,

因為的中垂線的方程為,

,得

當(dāng)時,,則;

當(dāng)時,,則,

當(dāng)斜率不存在時,顯然,

綜上,的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某隧道的剖面圖是由半圓及矩形組成,交通部門擬在隧道頂部安裝通風(fēng)設(shè)備(視作點),為了固定該設(shè)備,計劃除從隧道最高點處使用鋼管垂直向下吊裝以外,再在兩側(cè)自兩點分別使用鋼管支撐.已知道路寬,設(shè)備要求安裝在半圓內(nèi)部,所使用的鋼管總長度為.

(1)①設(shè),將表示為關(guān)于的函數(shù);

②設(shè),將表示為關(guān)于的函數(shù);

(2)請選用(1)中的一個函數(shù)關(guān)系式,說明如何設(shè)計,所用的鋼管材料最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若在兩個成語中,一個成語的末字恰是另一成語的首字,則稱這兩個成語有頂真關(guān)系,現(xiàn)從分別貼有成語人定勝天爭先恐后、一馬當(dāng)先、天馬行空先發(fā)制人5張大小形狀完全相同卡片中,任意抽取2張,則這2張卡片上的成語有頂真關(guān)系的概率為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù)xy滿足條件,則點的運動軌跡是( )

A.橢圓B.雙曲線C.拋物線D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)

1)求b的值,并求出函數(shù)的定義域

2)若存在區(qū)間,使得時,的取值范圍為,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸,的交點為,夾角為,與軸、軸正向同向的單位向量分別是,.由平面向量基本定理,對于平面內(nèi)的任一向量,存在唯一的有序?qū)崝?shù)對,使得,我們把叫做點在斜坐標(biāo)系中的坐標(biāo)(以下各點的坐標(biāo)都指在斜坐標(biāo)系中的坐標(biāo)).

1)若,為單位向量,且的夾角為,求點的坐標(biāo);

2)若,點的坐標(biāo)為,求向量的夾角;

3)若,求過點的直線的方程,使得原點到直線的距離最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班隨機(jī)抽查了名學(xué)生的數(shù)學(xué)成績,分?jǐn)?shù)制成如圖的莖葉圖,其中組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時間不足個小時,組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時間達(dá)到一個小時,學(xué)校規(guī)定分及分以上記為優(yōu)秀,分及分以上記為達(dá)標(biāo),分以下記為未達(dá)標(biāo).

1)根據(jù)莖葉圖完成下面的列聯(lián)表:

達(dá)標(biāo)

未達(dá)標(biāo)

總計

總計

2)判斷是否有的把握認(rèn)為“數(shù)學(xué)成績達(dá)標(biāo)與否”與“每天學(xué)習(xí)數(shù)學(xué)時間能否達(dá)到一小時”有關(guān).

參考公式與臨界值表:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為鼓勵家校互動,與某手機(jī)通訊商合作,為教師辦理流量套餐.為了解該校教師手機(jī)流量使用情況,通過抽樣,得到位教師近年每人手機(jī)月平均使用流量(單位:)的數(shù)據(jù),其頻率分布直方圖如下:

若將每位教師的手機(jī)月平均使用流量分別視為其手機(jī)月使用流量,并將頻率為概率,回答以下問題.

(Ⅰ) 從該校教師中隨機(jī)抽取人,求這人中至多有人月使用流量不超過 的概率;

(Ⅱ) 現(xiàn)該通訊商推出三款流量套餐,詳情如下:

套餐名稱

月套餐費(單位:元)

月套餐流量(單位:)

這三款套餐都有如下附加條款:套餐費月初一次性收取,手機(jī)使用一旦超出套餐流量,系統(tǒng)就自動幫用戶充值 流量,資費元;如果又超出充值流量,系統(tǒng)就再次自動幫用戶充值 流量,資費元/次,依次類推,如果當(dāng)月流量有剩余,系統(tǒng)將自動清零,無法轉(zhuǎn)入次月使用.

學(xué)校欲訂購其中一款流量套餐,為教師支付月套餐費,并承擔(dān)系統(tǒng)自動充值的流量資費的,其余部分由教師個人承擔(dān),問學(xué)校訂購哪一款套餐最經(jīng)濟(jì)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的數(shù)表為森德拉姆篩(森德拉姆,東印度學(xué)者),其特點是每行每列都成等差數(shù)列.在此表中,數(shù)字“121”出現(xiàn)的次數(shù)為___________.

2

3

4

5

6

7

……

3

5

7

9

11

13

……

4

7

10

13

16

19

……

5

9

13

17

21

25

……

6

11

16

21

26

31

……

7

13

19

25

31

37

……

……

……

……

……

……

……

……

查看答案和解析>>

同步練習(xí)冊答案