【題目】已知動圓過點,且在軸上截得的弦長為4.

(1)求動圓圓心的軌跡方程;

(2)過點的直線與曲線交于點,,與軸交于點,設,,求證:是定值.

【答案】(1);(2)詳見解析.

【解析】

(1)設動圓心C(x,y),利用半徑相等可得:,化簡即可得出動圓圓心C的軌跡方程.

(2)設直線l的方程為:x=ty+2.設A(x1,y1),B(x2,y2).與拋物線方程聯(lián)立化為:y2﹣4ty﹣8=0.利用根與系數(shù)的關系、向量坐標運算性質(zhì)即可得出.

(l)設動圓圓心坐標為

由題意得:動圓半徑,圓心到軸的距離為.

所以,

化簡得:

所以動圓圓心的軌跡方程為.

(2)設直線的方程為,

代入,得.

,,

,.

,所以,.

因為,所以,

所以.

同理可得,,

所以.

是定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】籃球運動于1891年起源于美國,它是由美國馬薩諸塞州斯普林菲爾德(舊譯麻省春田)市基督教青年會()訓練學校的體育教師詹姆士·奈史密斯博士()發(fā)明.它是以投籃、上籃和扣籃為中心的對抗性體育運動之一,是可以增強體質(zhì)的一種運動.已知籃球的比賽中,得分規(guī)則如下:3分線外側(cè)投入可得3分,3分線內(nèi)側(cè)投入可得2分,不進得0分.經(jīng)過多次試驗,某人投籃100次,有20個是3分線外側(cè)投入,30個是3分線內(nèi)側(cè)投入,其余不能入籃,且每次投籃為相互獨立事件.

(1)求該人在4次投籃中恰有三次是3分線外側(cè)投入的概率;

(2)求該人在4次投籃中至少有一次是3分線外側(cè)投入的概率;

(3)求該人兩次投籃后得分的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,。

(1)求的單調(diào)區(qū)間;

(2)討論零點的個數(shù);

(3)當時,設恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,四邊形是矩形,平面平面,點分別為中點.

1)求證:平面.

2)若.

①求二面角的余弦值.

②求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,,,,平面平面,點上一點.

(1)若平面,求證:點中點;

(2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足),).

(1)若,證明:是等比數(shù)列;

(2)若存在,使得,成等差數(shù)列.

① 求數(shù)列的通項公式;

② 證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓Cab0)的右焦點為F,橢圓C上的兩點A,B關于原點對稱,且滿足,|FB|≤|FA|≤2|FB|,則橢圓C的離心率的取值范圍是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1, 圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線方程;

2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱的所有棱長都是2,平面ABC,DE分別是AC,的中點.

求證:平面;

求二面角的余弦值.

查看答案和解析>>

同步練習冊答案