【題目】如果存在常數(shù)k使得無窮數(shù)列滿足恒成立,則稱為數(shù)列.
(1)若數(shù)列是數(shù)列,,,求;
(2)若等差數(shù)列是數(shù)列,求數(shù)列的通項公式;
(3)是否存在數(shù)列,使得,,,…是等比數(shù)列?若存在,請求出所有滿足條件的數(shù)列;若不存在,請說明理由.
【答案】(1);(2)或或;(3)存在;滿足條件的數(shù)列有無窮多個,其通項公式為.
【解析】
(1)根據(jù)數(shù)列的定義,得,,可求;
(2)根據(jù)數(shù)列的定義,得,分和兩種情況討論. 當(dāng),.當(dāng)時,由是等差數(shù)列,對賦值,求出和公差,即求;
(3)假設(shè)存在滿足條件的數(shù)列,設(shè)等比數(shù)列,,,…的公比為q.則有,,可得q=1,故當(dāng)時,.當(dāng)時,不妨設(shè),且i為奇數(shù),
由,可得.
即滿足條件的數(shù)列有無窮多個,其通項公式為.
(1)由數(shù)列是數(shù)列,得,,可得;
(2)由是數(shù)列知恒成立,取m=1得恒成立,
當(dāng),時滿足題意,此時,
當(dāng)時,由可得,取m=n=2得,
設(shè)公差為d,則解得或者,
綜上,或或,經(jīng)檢驗均合題意.
(3)假設(shè)存在滿足條件的數(shù)列,
不妨設(shè)該等比數(shù)列,,,…的公比為q,
則有,
可得①
,
可得②
綜上①②可得q=1,
故,代入得,
則當(dāng)時,,
又,
當(dāng)時,不妨設(shè),且i為奇數(shù),
由,
而,,,.
綜上,滿足條件的數(shù)列有無窮多個,其通項公式為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】超級細(xì)菌是一種耐藥性細(xì)菌,產(chǎn)生超級細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因為感染而引起可怕的炎癥,高燒,痙攣,昏迷甚至死亡.某藥物研究所為篩查某種超級細(xì)菌,需要檢驗血液是否為陽性,現(xiàn)有n()份血液樣本,每個樣本取到的可能性相等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗n次;(2)混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,若檢驗結(jié)果為陰性,則這份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了;如果檢驗結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份血液再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為次.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為p().現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.
(1)運用概率統(tǒng)計的知識,若,試求P關(guān)于k的函數(shù)關(guān)系式;
(2)若P與抗生素計量相關(guān),其中,,…,()是不同的正實數(shù),滿足,對任意的(),都有.
(i)證明:為等比數(shù)列;
(ii)當(dāng)時,采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)期望值比逐份檢驗的總次數(shù)期望值更少,求k的最大值.
參考數(shù)據(jù):,,,,,
,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,,為自然對數(shù)的底數(shù).
若,,①若函數(shù)單調(diào)遞增,求實數(shù)的取值范圍;②若對任意,恒成立,求實數(shù)的取值范圍.
若,且存在兩個極值點,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是平面的斜線段,A為斜足,點C滿足,且在平面內(nèi)運動,則有以下幾個命題:
①當(dāng)時,點C的軌跡是拋物線;
②當(dāng)時,點C的軌跡是一條直線;
③當(dāng)時,點C的軌跡是圓;
④當(dāng)時,點C的軌跡是橢圓;
⑤當(dāng)時,點C的軌跡是雙曲線.
其中正確的命題是__________.(將所有正確的命題序號填到橫線上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,).
(1)當(dāng)時,若函數(shù)在上有兩個零點,求的取值范圍;
(2)當(dāng)時,是否存在,使得不等式恒成立?若存在,求出的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),().
(Ⅰ)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;
(Ⅱ)設(shè),若,若函數(shù)對恒成立,求實數(shù)的取值范圍.(是自然對數(shù)的底數(shù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟的快速增長、規(guī)模的迅速擴張以及人民生活水平的逐漸提高,日益劇增的垃圾給城市的綠色發(fā)展帶來了巨大的壓力.相關(guān)部門在有5萬居民的光明社區(qū)采用分層抽樣方法得到年內(nèi)家庭人均與人均垃圾清運量的統(tǒng)計數(shù)據(jù)如下表:
人均(萬元/人) | 3 | 6 | 9 | 12 | 15 |
人均垃圾清運量(噸/人) | 0.13 | 0.23 | 0.31 | 0.41 | 0.52 |
(1)已知變量與之間存在線性相關(guān)關(guān)系,求出其回歸直線方程;
(2)隨著垃圾分類的推進(jìn),燃燒垃圾發(fā)電的熱值大幅上升,平均每噸垃圾可折算成上網(wǎng)電量200千瓦時,如圖是光明社區(qū)年內(nèi)家庭人均的頻率分布直方圖,請補全的缺失部分,并利用(1)的結(jié)果,估計整個光明社區(qū)年內(nèi)垃圾可折算成的總上網(wǎng)電量.
參考公式]回歸方程,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,其中為歐拉數(shù),,為未知實數(shù),且.如果和均為函數(shù)的單調(diào)區(qū)間.
(1)求;
(2)若函數(shù)在上有極值點,為實數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】植物園擬建一個多邊形苗圃,苗圃的一邊緊靠著長度大于30m的圍墻.現(xiàn)有兩種方案:
方案① 多邊形為直角三角形(),如圖1所示,其中;
方案② 多邊形為等腰梯形(),如圖2所示,其中.
請你分別求出兩種方案中苗圃的最大面積,并從中確定使苗圃面積最大的方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com