【題目】某校抽取了100名學(xué)生期中考試的英語和數(shù)學(xué)成績,已知成績都不低于100分,其中英語成績的頻率分布直方圖如圖所示,成績分組區(qū)間是,,,,.
(1)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生英語成績的平均數(shù)和中位數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(2)若這100名學(xué)生數(shù)學(xué)成績分?jǐn)?shù)段的人數(shù)y的情況如下表所示:
分組區(qū)間 | |||||
y | 15 | 40 | 40 | m | n |
且區(qū)間內(nèi)英語人數(shù)與數(shù)學(xué)人數(shù)之比為,現(xiàn)從數(shù)學(xué)成績在的學(xué)生中隨機(jī)選取2人,求選出的2人中恰好有1人數(shù)學(xué)成績在的概率.
【答案】(1)這100名學(xué)生英語成績的平均數(shù)和中位數(shù)分別為,(2)
【解析】
(1)利用頻率分布直方圖求平均數(shù),中位數(shù)的方法求解即可;
(2)利用題設(shè)條件得出的值,再由古典概型的概率公式求解即可.
(1)這100名學(xué)生英語成績的平均數(shù)為
設(shè)這100名學(xué)生英語成績的中位數(shù)為
直方圖可知對(duì)應(yīng)的頻率分別為
,解得
則這100名學(xué)生英語成績的中位數(shù)為
(2)區(qū)間內(nèi)英語人數(shù)為人
區(qū)間內(nèi)數(shù)學(xué)人數(shù)為人
設(shè)數(shù)學(xué)成績在的人記為,數(shù)學(xué)成績在的人記為
則從數(shù)學(xué)成績在的學(xué)生中隨機(jī)選取2人的所有情況為,,,共10種,其中選出的2人中恰好有1人數(shù)學(xué)成績在有6種
即選出的2人中恰好有1人數(shù)學(xué)成績在的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC邊上的高所在直線的方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0.若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)A和點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,且經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對(duì)稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若曲線在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)性;
(3)若對(duì)于任意的,不等式在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在常數(shù),使得無窮數(shù)列滿足,則稱數(shù)列為“Γ數(shù)列.已知數(shù)列為“Γ數(shù)列”.
(1)若數(shù)列中,,試求的值;
(2)若數(shù)列中,,記數(shù)列的前n項(xiàng)和為,若不等式對(duì)恒成立,求實(shí)數(shù)λ的取值范圍;
(3)若為等比數(shù)列,且首項(xiàng)為b,試寫出所有滿足條件的,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列滿足:,當(dāng)',時(shí), (其中表示,,…,中的最大項(xiàng)),有以下結(jié)論:
① 若數(shù)列是常數(shù)列,則;
② 若數(shù)列是公差的等差數(shù)列,則;
③ 若數(shù)列是公比為的等比數(shù)列,則:
④ 若存在正整數(shù),對(duì)任意,都有,則,是數(shù)列的最大項(xiàng).
其中正確結(jié)論的序號(hào)是____(寫出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于數(shù)列,若存在正數(shù)p,使得對(duì)任意都成立,則稱數(shù)列為“擬等比數(shù)列”.
已知,且,若數(shù)列和滿足:,且,.
若,求的取值范圍;
求證:數(shù)列是“擬等比數(shù)列”;
已知等差數(shù)列的首項(xiàng)為,公差為d,前n項(xiàng)和為,若,,,且是“擬等比數(shù)列”,求p的取值范圍請用,d表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)年利率為的連續(xù)復(fù)利,要在年后達(dá)到本利和,則現(xiàn)在投資值為,是自然對(duì)數(shù)的底數(shù).如果項(xiàng)目的投資年利率為的連續(xù)復(fù)利.
(1)現(xiàn)在投資5萬元,寫出滿年的本利和,并求滿10年的本利和;(精確到0.1萬元)
(2)一個(gè)家庭為剛出生的孩子設(shè)立創(chuàng)業(yè)基金,若每年初一次性給項(xiàng)目投資2萬元,那么,至少滿多少年基金共有本利和超過一百萬元?(精確到1年)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足:,(其中為非零實(shí)常數(shù)).
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出通項(xiàng)公式;
(2)設(shè),記,求使得不等式成立的最小正整數(shù);
(3)若,對(duì)于任意的正整數(shù),均有,當(dāng)、、依次成等比數(shù)列時(shí),求、、的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com