【題目】如圖,在四棱錐中,底面為直角梯形, , 和均為等邊三角形,且平面平面,點為中點.
(1)求證: 平面;
(2)若的面積為,求四棱錐的體積.
科目:高中數學 來源: 題型:
【題目】已知集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)A∩B;
(2)若C={x|x≥a},且B∩C=B,求a的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知偶函數y=f(x)(x∈R)在區(qū)間[0,3]上單調遞增,在區(qū)間[3,+∞)上單調遞減,且滿足f(﹣4)=f(1)=0,則不等式x3f(x)<0的解集是( )
A.(﹣4,﹣1)∪(1,4)
B.(﹣∞,﹣4)∪(﹣1,1)∪(3,+∞)
C.(﹣∞,﹣4)∪(﹣1,0)∪(1,4)
D.(﹣4,﹣1)∪(0,1)∪(4,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(2log4x﹣2)(log4x﹣ ),
(1)當x∈[2,4]時,求該函數的值域;
(2)求f(x)在區(qū)間[2,t](t>2)上的最小值g(t).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項和為Sn=2an﹣2,數列{bn}是首項為a1 , 公差不為零的等差數列,且b1 , b3 , b11成等比數列.
(1)求數列{an}與{bn}的通項公式;
(2)設數列{cn}滿足cn= ,前n項和為Pn , 對于n∈N*不等式 Pn<t恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=loga(1+x)+loga(3﹣x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定義域.
(2)求f(x)在區(qū)間[0, ]上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)= .
(1)判斷函數f(x)的奇偶性并證明;
(2)證明f(x)是定義域內的增函數;
(3)解不等式f(1﹣m)+f(1﹣m2)>0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3﹣3ax+2(a∈R).
(1)當a=1時,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com