【題目】已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[0,3]上單調(diào)遞增,在區(qū)間[3,+∞)上單調(diào)遞減,且滿足f(﹣4)=f(1)=0,則不等式x3f(x)<0的解集是(
A.(﹣4,﹣1)∪(1,4)
B.(﹣∞,﹣4)∪(﹣1,1)∪(3,+∞)
C.(﹣∞,﹣4)∪(﹣1,0)∪(1,4)
D.(﹣4,﹣1)∪(0,1)∪(4,+∞)

【答案】D
【解析】解:根據(jù)題意作出函數(shù)y=f(x)的草圖:

由圖象知,x3f(x)<0 ,
解得0<x<1或x>4或﹣4<x<﹣1,
故選D.
【考點(diǎn)精析】利用奇偶性與單調(diào)性的綜合對(duì)題目進(jìn)行判斷即可得到答案,需要熟知奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x|x﹣a|,若對(duì)于任意x1 , x2∈[3,+∞),x1≠x2 , 不等式 >0恒成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))(…是自然對(duì)數(shù)的底數(shù)).

(1)求單調(diào)區(qū)間;

(2)討論在區(qū)間內(nèi)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個(gè)共享單車企業(yè)在某個(gè)城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過(guò)程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見(jiàn)下表:

租用單車數(shù)量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):

①完成下表(計(jì)算結(jié)果精確到0.1)(備注: ,稱為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));

租用單車數(shù)量 (千輛)

2

3

4

5

8

每天一輛車平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計(jì)值

2.3

2

1.9

殘差

0.1

0

0

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較的大小,判斷哪個(gè)模型擬合效果更好.

(2)這個(gè)公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場(chǎng)調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬(wàn)輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問(wèn)該公司應(yīng)該投放8千輛還是1萬(wàn)輛能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤(rùn)=收入-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(ex)=ax2﹣x,a∈R.
(1)求f(x)的解析式;
(2)求x∈(0,1]時(shí),f(x)的值域;
(3)設(shè)a>0,若h(x)=[f(x)+1﹣a]logxe對(duì)任意的x1 , x2∈[e3 , e1],總有|h(x1)﹣h(x2)|≤a+ 恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x2﹣2ax+a在區(qū)間(﹣∞,1)上有最小值,則函數(shù) 在區(qū)間(1,+∞)上一定(
A.有最小值
B.有最大值
C.是減函數(shù)
D.是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的 ,則判斷框內(nèi)填入的條件可以是(
A.k≥7
B.k>7
C.k≤8
D.k<8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, 均為等邊三角形,且平面平面,點(diǎn)中點(diǎn).

(1)求證: 平面;

(2)若的面積為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是遞增的等差數(shù)列,前n項(xiàng)和為Sn , a1=1,且a1 , a2 , S3成等比數(shù)列.
(1)求an及Sn;
(2)求數(shù)列{ }的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案