【題目】函數f(x)=x2+ax+3,已知不等式f(x)<0的解集為{x|1<x<3}.
(1)求a;
(2)若不等式f(x)≥m的解集是R,求實數m的取值范圍;
(3)若f(x)≥nx對任意的實數x≥1成立,求實數n的取值范圍.
【答案】
(1)解:∵函數f(x)=x2+ax+3,
且f(x)<0的解集為{x|1<x<3},
∴a=﹣4
(2)解:由(1)得:f(x)=x2﹣4x+3,
∴f(x)=(x﹣2)2﹣1,
∴f(x)最小值為﹣1,
∴不等式f(x)≥m的解集為R,
實數m的取值范圍為m≤﹣1
(3)解:∵f(x)≥nx對任意的實數x≥1都成立,
即x2﹣4x+3≥nx對任意的實數x≥1都成立,
兩邊同時除以x得到:x+ ﹣4≥n對任意的實數x≥1都成立,
令g(x)=x+ ﹣4,x≥1,
g′(x)=1﹣ = ,
令g′(x)>0,解得:x> ,令g′(x)<0,解得:x< ,
故g(x)在[1, )遞減,在( ,+∞)遞增,
故g(x)min=g( )=﹣4+2 ,
故n≤g(x)min=﹣4+2
【解析】(1)根據二次函數根與系數的關系求出a的值即可;(2)求出函數的解析式,根據二次函數的性質求出f(x)的最小值,從而求出m的范圍即可;(3)問題轉化為x+ ﹣4≥n對任意的實數x≥1都成立,令g(x)=x+ ﹣4,x≥1,根據函數的單調性求出g(x)的最小值,從而求出n的范圍即可.
【考點精析】本題主要考查了解一元二次不等式的相關知識點,需要掌握求一元二次不等式解集的步驟:一化:化二次項前的系數為正數;二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數的圖象;五解集:根據圖象寫出不等式的解集;規(guī)律:當二次項系數為正時,小于取中間,大于取兩邊才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3﹣3x.
(1)求曲線y=f(x)在點x=2處的切線方程;
(2)若過點A(1,m)(m≠﹣2)可作曲線y=f(x)的三條切線,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,分別是橢圓的左、右焦點.
(1)若點是第一象限內橢圓上的一點, ,求點的坐標;
(2)設過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某鋼廠打算租用,兩種型號的火車車皮運輸900噸鋼材,,兩種車皮的載貨量分別為36噸和60噸,租金分別為1.6萬元/個和2.4萬元/個,鋼廠要求租車皮總數不超過21個,且型車皮不多于型車皮7個,分別用,表示租用,兩種車皮的個數.
(1)用,列出滿足條件的數學關系式,并畫出相應的平面區(qū)域;
(2)分別租用,兩種車皮的個數是多少時,才能使得租金最少?并求出此最小租金.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)的導函數y=f′(x)的圖象如圖所示,則關于函數y=f(x),下列說法正確的是( )
A.在x=﹣1處取得極大值
B.在區(qū)間[﹣1,4]上是增函數
C.在x=1處取得極大值
D.在區(qū)間[1,+∞)上是減函數
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com