若平面向量
a
,
b
滿足
a
+
b
=(1,5),
a
-
b
=(2,3),則
a
b
=( 。
A、13
B、
13
2
C、
13
4
D、26
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量的坐標(biāo)運(yùn)算和數(shù)乘運(yùn)算、數(shù)量積運(yùn)算即可得出.
解答: 解:∵向量
a
,
b
滿足
a
+
b
=(1,5),
a
-
b
=(2,3),
解得
a
=
1
2
[(1,5)+(2,3)]
=(
3
2
,4)
,
b
=
1
2
[(1,5)-(2,3)]
=(-
1
2
,1)

a
b
=
3
2
×(-
1
2
)+4×1
=
13
4

故選:C.
點(diǎn)評(píng):本題考查了向量的坐標(biāo)運(yùn)算和數(shù)乘運(yùn)算、數(shù)量積運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2lnx+x2,若f(x2-1)≤1,則實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=1,a2=2,當(dāng)n∈N*時(shí),an+2等于an•an+1的個(gè)位數(shù),若數(shù)列{an}的前K項(xiàng)和為Sk=243,則K的值為(  )
A、61B、62C、63D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|1-x>0},B={x|x2-x≤0},則A∩B=( 。
A、(-∞,1)
B、(0,1]
C、[0,1)
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)(2,0)且與直線x-2y-1=0平行的直線方程是(  )
A、x-2y-2=0
B、x-2y+2=0
C、2x-y-4=0
D、x+2y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b,c滿足a+b+c=2,a2+b2+c2=4,且a>b>c,不等式ln(a2+2a)-a≥M恒成立,則M的最大值是( 。
A、ln
40
9
-
4
3
B、ln
16
9
-
2
3
C、ln(8+4
2
)-2
2
D、ln8-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高二年級(jí)有文科學(xué)生500人,理科學(xué)生1500人,為了解學(xué)生對(duì)數(shù)學(xué)的喜歡程度,現(xiàn)用分層抽樣的方法從該年級(jí)抽取一個(gè)容量為60的樣本,則樣本中文科生有(  )人.
A、10B、15C、20D、25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算
.
ac
bd
.
=ad-bc,則
.
i2
1i
.
(i是虛數(shù)單位)為( 。
A、3
B、-3
C、i2-1
D、i2+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lnx,g(x)=af(x)+f′(x),
(1)求g(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),比較g(x)與g(
1
x
)
的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案