【題目】已知函數(shù)y=f(x)的圖象關(guān)于y軸對稱,當x∈(0,+∞)時,f(x)=log2x,若a=f(﹣3),b=f( ),c=f(2),則a,b,c的大小關(guān)系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
【答案】D
【解析】解:根據(jù)題意,函數(shù)y=f(x)的圖象關(guān)于y軸對稱,則函數(shù)f(x)為偶函數(shù),
則有a=f(﹣3)=f(3),
當x∈(0,+∞)時,f(x)=log2x,則f(x)在區(qū)間(0,+∞)上為增函數(shù),
又由 <2<3,則有f( )<f(2)<f(3),
即a>c>b,
故選:D.
【考點精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識點,需要掌握奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 為正方體,下面結(jié)論:① 平面 ;② ;③ 平面 .其中正確結(jié)論的個數(shù)是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex+ (a∈R)是定義域為R的奇函數(shù),其中e是自然對數(shù)的底數(shù).
(1)求實數(shù)a的值;
(2)若存在x∈(0,+∞),使不等式f(x2+x)+f(2﹣tx)<0成立,求實數(shù)t的取值范圍;
(3)若函數(shù)y=e2x+ ﹣2mf(x)在(m,+∞)上不存在最值,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有2名男生和3名女生. (Ⅰ)若其中2名男生必須相鄰排在一起,則這5人站成一排,共有多少種不同的排法?
(Ⅱ)若男生甲既不能站排頭,也不能站排尾,這5人站成一排,共有多少種不同的排法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點 及圓 .
(1)設(shè)過點 的直線 與圓 交于 兩點,當 時,求以線段 為直徑的圓 的方程;
(2)設(shè)直線 與圓 交于 兩點,是否存在實數(shù) ,使得過點 的直線 垂直平分弦 ?若存在,求出實數(shù) 的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,其中 ,若對任意的非零實數(shù) ,存在唯一的非零實數(shù) ,使得 成立, . (并且寫出 的取值范圍)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,已知點A的極坐標為( , ),直線l的極坐標方程為ρcos(θ﹣ )=a,且點A在直線l上,
(1)求a的值及直線l的直角坐標方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】汽車租賃公司為了調(diào)查A,B兩種車型的出租情況,現(xiàn)隨機抽取了這兩種車型各100輛汽車,分別統(tǒng)計了每輛車某個星期內(nèi)的出租天數(shù),統(tǒng)計數(shù)據(jù)如下表: A型車
出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
車輛數(shù) | 5 | 10 | 30 | 35 | 15 | 3 | 2 |
B型車
出租天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
車輛數(shù) | 14 | 20 | 20 | 16 | 15 | 10 | 5 |
( I)從出租天數(shù)為3天的汽車(僅限A,B兩種車型)中隨機抽取一輛,估計這輛汽車恰好是A型車的概率;
(Ⅱ)根據(jù)這個星期的統(tǒng)計數(shù)據(jù),估計該公司一輛A型車,一輛B型車一周內(nèi)合計出租天數(shù)恰好為4天的概率;
(Ⅲ)如果兩種車型每輛車每天出租獲得的利潤相同,該公司需要從A,B兩種車型中購買一輛,請你根據(jù)所學的統(tǒng)計知識,給出建議應該購買哪一種車型,并說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com