【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1 , a14=b4 . (Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和Sn

【答案】解:(Ⅰ)等比數(shù)列{bn}的公比q= = =3, b1= = =1,
b4=b3q=9×3=27,
設(shè)等差數(shù)列{an}的公差為d,而a1=1,a14=27.
可得1+13d=27,即d=2,
即有an=1+2(n﹣1)=2n﹣1,n∈N*;
(Ⅱ)an=1+2(n﹣1)=2n﹣1,bn=3n1
cn=an+bn=2n﹣1+3n1 ,
前n項(xiàng)和Sn=(1+3+…+2n﹣1)+(1+3+…+3n1
= n(1+2n﹣1)+
=n2+
【解析】(Ⅰ)等比數(shù)列{bn}的公比為q,等差數(shù)列{an}的公差為d,由等差數(shù)列和等比數(shù)列的通項(xiàng)公式,即可得到首項(xiàng)和d,q,進(jìn)而得到所求通項(xiàng)公式;(Ⅱ)求得an=1+2(n﹣1)=2n﹣1,bn=3n1 , cn=an+bn=2n﹣1+3n1 , 運(yùn)用數(shù)列的求和方法:分組求和,結(jié)合等差數(shù)列和等比數(shù)列的求和公式,計(jì)算即可得到所求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,如果都是整數(shù),就稱(chēng)點(diǎn)為整點(diǎn),下列命題中正確的是__________.(寫(xiě)出所有正確命題的編號(hào))

①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn);

②若都是無(wú)理數(shù),則直線不經(jīng)過(guò)任何整點(diǎn);

③直線經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)經(jīng)過(guò)兩個(gè)不同的整點(diǎn);

④直線經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是: 都是有理數(shù);

⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六組[40,50),[50,60)…[90,100]后,畫(huà)出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題: (Ⅰ) 求成績(jī)落在[70,80)上的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(Ⅱ) 估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ) 設(shè)學(xué)生甲、乙的成績(jī)屬于區(qū)間[40,50),現(xiàn)從成績(jī)屬于該區(qū)間的學(xué)生中任選兩人,求甲、乙中至少有一人被選的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= (其中p2+q2≠0),且存在公差不為0的無(wú)窮等差數(shù)列{an},使得函數(shù)在其定義域內(nèi)還可以表示為f(x)=1+a1x+a2x+a2x2+…+anxn+…
(1)求a1 , a2的值(用p,q表示);
(2)求{an}的通項(xiàng)公式;
(3)當(dāng)n∈N*且n≥2時(shí),比較(an1an與(an 的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知z是復(fù)數(shù),z+2i, 均為實(shí)數(shù)(i為虛數(shù)單位),且復(fù)數(shù)(z+ai)2在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論正確的是(
A.各個(gè)面都是三角形的幾何體是三棱錐
B.一平面截一棱錐得到一個(gè)棱錐和一個(gè)棱臺(tái)
C.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則該棱錐可能是正六棱錐
D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某小區(qū)為美化環(huán)境,準(zhǔn)備在小區(qū)內(nèi)草坪的一側(cè)修建一條直路,另一側(cè)修建一條休閑大道,它的前一段是函數(shù) 的一部分,后一段是函數(shù) ),時(shí)的圖象,圖象的最高點(diǎn)為, ,垂足為.

(1)求函數(shù)的解析式;

(2)若在草坪內(nèi)修建如圖所示的兒童游樂(lè)園PMFE,問(wèn)點(diǎn)落在曲線上何處時(shí),兒童樂(lè)園的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若不等式f(﹣2m2+2m﹣1)+f(8m+ek)>0(e是自然對(duì)數(shù)的底數(shù)),對(duì)任意的m∈[﹣2,4]恒成立,則整數(shù)k的最小值是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,其中0<ω<2; (Ⅰ)若f(x)的最小正周期為π,求f(x)的單調(diào)增區(qū)間;
(Ⅱ)若函數(shù)f(x)的圖象的一條對(duì)稱(chēng)軸為 ,求ω的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案