【題目】已知兩條不重合的直線和兩個不重合的平面,若,則下列四個命題:①若,則;②若,則; ③若,則;④若,則,其中正確命題的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
【答案】C
【解析】對于①,若,則,因為,所以,所以①正確;對于②,若時, ,不能推出,所以不能得出,②錯誤;對于③,若,則,而,由面面垂直的判定定理有,所以③正確;對于④,若,又, ,則的關(guān)系不能確定,可能平行,可能相交,可能異面,④錯誤.正確的有①③,故正確命題的個數(shù)為2.選C.
點睛:本題主要考查了立體幾何中的線面位置關(guān)系,屬于易錯題.在①中考查了線面垂直的性質(zhì)定理,線面垂直,則線線垂直;在②中,反例:見下圖,直三棱柱中, 平面, 面,但平面平面,故②是錯誤的; ③是考查面面垂直的判定定理;在④中, 直線的位置關(guān)系不能確定,可能平行,可能相交,可能異面.
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于二項式(x-1)2 013有下列命題:
(1)該二項展開式中非常數(shù)項的系數(shù)和是1;
(2)該二項展開式中第六項為C2 0136x2 007;
(3)該二項展開式中系數(shù)最大的項是第1 007項;
(4)當x=2 014時,(x-1)2 013除以2 014的余數(shù)是2 013.
其中正確命題有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列4個命題:
①“若成等比數(shù)列,則”的逆命題;
②“如果,則”的否命題;
③在中,“若”則“”的逆否命題;
④當時,若對恒成立,則的取值范圍是.
其中真命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,圓是以的中點為圓心, 為半徑的圓.
(Ⅰ)若圓的切線在軸和軸上截距相等,求切線方程;
(Ⅱ)若是圓外一點,從向圓引切線, 為切點, 為坐標原點,且有,求使最小的點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中有個黃色、個白色的乒乓球,做不放回抽樣,每次任取個球,取次,則關(guān)于事件“直到第二次才取到黃色球”與事件“第一次取到白球的情況下,第二次恰好取得黃球”的概率說法正確的是( )
A. 事件“直到第二次才取到黃色球”與事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率都等于
B. 事件“直到第二次才取到黃色球”與事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率都等于
C. 事件“直到第二次才取到黃色球”的概率等于,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于
D. 事件“直到第二次才取到黃色球”的概率等于,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的上下兩個焦點分別為, ,過點與軸垂直的直線交橢圓于、兩點, 的面積為,橢圓的離心力為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知為坐標原點,直線: 與軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為推行“高效課堂”教學法,某數(shù)學老師分別用傳統(tǒng)教學和“高效課堂”兩種不同的教學方法,在同一年級的甲、乙兩個同層次的班進行教學實驗,為了解教學效果,期末考試后, 分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出的莖葉圖如圖(記成績不低于70分者為“成績優(yōu)良”).
(1)分別計算甲、乙兩班20個樣本中,數(shù)學成績前十名的平均分,并大致判斷那種教學方法的教學效果更佳;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績優(yōu)良與教學方法有關(guān)”?
附:
獨立性檢驗臨界表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分為14分)已知定義域為R的函數(shù)是奇函數(shù).
(1)求a,b的值;
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com