分析 ①②利用函數(shù)的奇偶性判定;③函數(shù)的解析式為y=x2,它的值域?yàn)閧0,1,4},則x必有0,±1至少有一個(gè),±2至少有一個(gè);④根據(jù)函數(shù)f(x)=lnx的單調(diào)性判定.
解答 解:對(duì)于①,定義在R上的函數(shù)f(x)可以滿足f(-2)=f(2)=0,故錯(cuò);
對(duì)于②,由f(-x)=|f(x)|≥0得f(-x)≥0對(duì)于任意x成立,則x取-x也成立即f(x)≥0,則f(-x)=f(x),∴f(x)一定是偶函數(shù),該命題是真命題滿足偶函數(shù)的定義,故正確;
對(duì)于③,一個(gè)函數(shù)的解析式為y=x2,它的值域?yàn)閧0,1,4},則x必有0,±1至少有一個(gè),±2至少有一個(gè),這樣的不同函數(shù)共有9個(gè),故正確;
對(duì)于④,函數(shù)f(x)=lnx是定義域內(nèi)的增函數(shù),根據(jù)增函數(shù)定義,則對(duì)于定義域中的任意x1,x2(x1≠x2),恒有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$,故正確
故答案為:②③④
點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性、定義域、值域、單調(diào)性,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com