【題目】2018年高考成績揭曉,某高中再創(chuàng)輝煌,考后學校對于單科成績逐個進行分析:現(xiàn)對甲、乙兩個文科班的數(shù)學成績進行分析,規(guī)定:大于等于135分為優(yōu)秀,135分以下為非優(yōu)秀,成績統(tǒng)計后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;
(2)請問:是否有75%的把握認為“數(shù)學成績與所在的班級有關(guān)系”?
(3)用分層抽樣的方法從甲、乙兩個文科班的數(shù)學成績優(yōu)秀的學生中抽取5名學生進行調(diào)研,然后再從這5名學生中隨機抽取2名學生進行談話,求抽到的2名學生中至少有1名乙班學生的概率.
參考公式:(其中)
參考數(shù)據(jù):
【答案】(1)見解析(2)有(3)
【解析】分析:⑴利用已知條件直接填寫聯(lián)列表即可
⑵求出,即可判斷結(jié)果
⑶從甲班成績優(yōu)秀的學生中抽取名,分別記為,從乙班成績優(yōu)秀的學生中抽取名,分別記為,列出所有基本事件,設“抽到的名學生中至少有名乙班學生”為事件,求出事件包含的基本事件個數(shù),然后求解概率
詳解:(1)
班級 | 優(yōu)秀 | 非優(yōu)秀 | 合計 |
甲班 | 37 | 55 | |
乙班 | 12 | 55 | |
合計 | 30 | 80 |
(2)由題意得
所以有75%的把握認為“數(shù)學成績與所在的班級有關(guān)系”
(3)因為甲、乙兩個班數(shù)學成績優(yōu)秀的學生人數(shù)的比例為,所以從甲班成績優(yōu)秀的學生中抽取3名,
分別記為,從乙班成績優(yōu)秀的學生中抽取2名,分別記為,
則從抽取的5名學生中隨機抽取2名學生的所有基本事件有,,共10個
設“抽到的2名學生中至少有1名乙班學生”為事件,則事件包含的基本事件有 ,共7個,
所以,
即抽到的2名學生中至少有1名乙班學生的概率是.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓
(1)求圓關(guān)于直線對稱的圓的標準方程;
(2)過點的直線被圓截得的弦長為8,求直線的方程;
(3)當取何值時,直線與圓相交的弦長最短,并求出最短弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)對一切實數(shù)都有成立,且.
(1)求的值;
(2)求的解析式,并用定義法證明在單調(diào)遞增;
(3)已知,設P:,不等式恒成立,Q:時,是單調(diào)函數(shù)。如果滿足P成立的的集合記為A,滿足Q成立的集合記為B,求(R為全集)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠要制造A種電子裝置45臺,B種電子裝置55臺,需用薄鋼板給每臺裝置配一個外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2m2,可做A、B的外殼分別為3個和5個,乙種薄鋼板每張面積3m2,可做A、B的外殼分別為6個和6個,求兩種薄鋼板各用多少張,才能使總的面積最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若對任意實數(shù)都有函數(shù)的圖象與直線相切,則稱函數(shù)為“恒切函數(shù)”,設函數(shù),其中.
(1)討論函數(shù)的單調(diào)性;
(2)已知函數(shù)為“恒切函數(shù)”,
①求實數(shù)的取值范圍;
②當取最大值時,若函數(shù)也為“恒切函數(shù)”,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com