“(a-1)(b-1)>0”是“a>1 且b>1”的(  )
A、充要條件
B、充分但不必要條件
C、必要但不充分條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)不等式的解法,利用充分條件和必要條件的定義進(jìn)行判斷即可.
解答: 解:由(a-1)(b-1)>0,解得a>1且b>1,或a<1且b<1,此時a>1 且b>1不成立,
當(dāng)a>1 且b>1時,(a-1)(b-1)>0成立,
即“(a-1)(b-1)>0”是“a>1 且b>1”必要不充分條件,
故選:C
點(diǎn)評:本題主要考查充分條件和必要條件的判斷,利用不等式的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知0<a<b<1,則( 。
A、3b<3a
B、(lga)2<(lgb)2
C、loga3>logb3
D、(
1
2
a<(
1
2
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是(  )
A、命題“?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0”
B、命題“p∧q為真”是命題“p∨q為真”的必要不充分條件
C、若“am2≤bm2,則a≤b”的否命題為假命題
D、已知圖象連續(xù)不斷的函數(shù)y=f(x)在區(qū)間(a,b)(其中b-a=0.1)上有唯一零點(diǎn),若“二分法”求這個零點(diǎn)(精確度0.0001)的近似值,則將區(qū)間(a,b)等分的次數(shù)至少是10次.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,x>lnx+2,命題q:?x∈R,log2x≥0,則(  )
A、命題p∨q是假命題
B、命題p∧q是真命題
C、命題p∧(¬q)是真命題
D、命題p∨(¬q)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x+1)是偶函數(shù),那么函數(shù)y=f(2x)的圖象的一條對稱軸是直線(  )
A、x=-1.
B、x=1
C、x=-
1
2
D、x=
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的S值為(  )
A、2
B、4
C、24
D、48+224

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某超市在節(jié)日期間進(jìn)行有獎促銷,凡在該超市購物滿200元的顧客,將獲得一次摸獎機(jī)會,規(guī)則如下:獎盒中放有除顏色外完全相同的1個紅色球,1個黃魚球,1個藍(lán)色球和1個黑色球.顧客不放回的每次摸出1個球,直至摸到黑色球停止摸獎.規(guī)定摸到紅色球獎勵10元,摸到黃色球或藍(lán)色球獎勵5元,摸到黑色球無獎勵.
(Ⅰ)求一名顧客摸球3次停止摸獎的概率;
(Ⅱ)記X為一名顧客摸獎獲得的獎求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

PM2.5是指大氣中直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米至75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo),北方城市環(huán)保局從該市市區(qū)2013年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機(jī)的抽取20天的數(shù)據(jù)作為樣本,發(fā)現(xiàn)空氣質(zhì)量為一級的有4天,為二級的有10天,超標(biāo)的有6天.
(1)從這20天的日均PM2.5監(jiān)測數(shù)據(jù)中,隨機(jī)抽出三天數(shù)據(jù),求恰有一天空氣質(zhì)量達(dá)到一級的概率;
(2)從這20天的數(shù)據(jù)中任取三天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列和數(shù)學(xué)期望;
(3)根據(jù)這20天的PM2.5日均值來估計(jì)一年的空氣質(zhì)量情況,則一年(按365天計(jì)算)中平均有多少天的空氣質(zhì)量達(dá)到一級或二級.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}和正項(xiàng)等比數(shù)列{bn}中,a1=b1=1,b2•b4=16,{an}的前8項(xiàng)和S8=92.
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)令Tn=
a1
bn+1
+
a2
bn+1
+…+
an
b2n
•n∈N*,求Tn

查看答案和解析>>

同步練習(xí)冊答案