【題目】某職業(yè)學(xué)校有2000名學(xué)生,校服務(wù)部為了解學(xué)生在校的月消費情況,隨機調(diào)查了100名學(xué)生,并將統(tǒng)計結(jié)果繪成直方圖如圖所示.
(1)試估計該校學(xué)生在校月消費的平均數(shù);
(2)根據(jù)校服務(wù)部以往的經(jīng)驗,每個學(xué)生在校的月消費金額(元)和服務(wù)部可獲得利潤(元),滿足關(guān)系式:根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問題:
(i)將校服務(wù)部從一個學(xué)生的月消費中,可獲得的利潤記為,求的分布列及數(shù)學(xué)期望.
(ii)若校服務(wù)部計劃每月預(yù)留月利潤的,用于資助在校月消費低于400元的學(xué)生,估計受資助的學(xué)生每人每月可獲得多少元?
【答案】(1)680;(2)(i)見解析;(ii)160.
【解析】
(1)根據(jù)頻率分布直方圖,取每組中點和相應(yīng)的頻率計算學(xué)生月消費的平均數(shù).
(2)(i)根據(jù)每個學(xué)生在校的月消費金額(元)和服務(wù)部可獲得利潤(元)之間的函數(shù)關(guān)系,得到獲得利潤的情況,及每種情況所對應(yīng)的概率,列出分布列,求出數(shù)學(xué)期望.
(ii)根據(jù)(i)中的數(shù)學(xué)期望,得到校服務(wù)部的每月總利潤,再求出受資助學(xué)生人數(shù),得到受資助的學(xué)生每人每月可獲得的錢數(shù).
(1)學(xué)生月消費的平均數(shù)
.
(2)(i)月消費值落入?yún)^(qū)間、、的頻率分別為0.05、0.80、0.15,
因此,,,
即的分布列為
10 | 30 | 50 | |
0.05 | 0.80 | 0.15 |
的數(shù)學(xué)期望值.
(ii)服務(wù)部的月利潤為(元),
受資助學(xué)生人數(shù)為,
每個受資助學(xué)生每月可獲得(元).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,為坐標(biāo)原點,動點在圓外,過點作圓的切線,設(shè)切點為.
(1)若點運動到處,求此時切線的方程;
(2)求滿足的點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,是線段上一點且滿足,是線段上一動點,把沿折起得到,使得平面平面,分別記,與平面所成角為,,平面與平面所成銳角為,則:( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)曲線交于點,曲線與軸交于點,求線段的中點到點的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是等差數(shù)列,是等比數(shù)列,,.
(1)求和的通項公式;
(2)若,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了分析某個高三學(xué)生的學(xué)習(xí)狀態(tài).現(xiàn)對他前5次考試的數(shù)學(xué)成績x,物理成績y進行分析.下面是該生前5次考試的成績.
數(shù)學(xué) | 120 | 118 | 116 | 122 | 124 |
物理 | 79 | 79 | 77 | 82 | 83 |
附..
已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,求物理成績y與數(shù)學(xué)成績x的回歸直線方程;
我們常用來刻畫回歸的效果,其中越接近于1,表示回歸效果越好.求.
已知第6次考試該生的數(shù)學(xué)成績達(dá)到132,請你估計第6次考試他的物理成績大約是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2018年的自主招生考試成績中隨機抽取100名學(xué)生的筆試成績,折合成標(biāo)準(zhǔn)分后,最高分是10分.按成績共分成五組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10),得到的頻率分布直方圖如圖所示:
(1)分別求第三,四,五組的頻率;
(2)該學(xué)校在第三,四,五組中用分層抽樣的方法抽取6名同學(xué).
①已知甲同學(xué)和乙同學(xué)均在第三組,求甲、乙同時被選中的概率
②若在這6名同學(xué)中隨機抽取2名,設(shè)第4組中有X名同學(xué),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左右焦點分別為,,在橢圓L上的點滿足,且,,成等差數(shù)列.
(1)求橢圓L的方程;
(2)過點A作兩條傾斜角互補的直線,,它們與橢圓L的另一個交點分別為B,C,試問直線BC的斜率是否是定值?若是,求出該斜率;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市移動公司為了提高服務(wù)質(zhì)量,決定對使用A,B兩種套餐的集團用戶進行調(diào)查,準(zhǔn)備從本市個人數(shù)超過1000人的大集團和8個人數(shù)低于200人的小集團中隨機抽取若干個集團進行調(diào)查,若一次抽取2個集團,全是小集團的概率為.
求n的值;
若取出的2個集團是同一類集團,求全為大集團的概率;
若一次抽取4個集團,假設(shè)取出小集團的個數(shù)為X,求X的分布列和期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com