13.設(shè)a=cos212°-sin212°,b=$\frac{2tan12°}{1-ta{n}^{2}12°}$,c=$\sqrt{\frac{1-cos48°}{2}}$,則有( 。
A.c<b<aB.a<b<cC.a<c<bD.b<a<c

分析 由條件利用三角恒等變換,特殊角的三角函數(shù)值即可比較得解.

解答 解:∵a=cos212°-sin212°=cos24°,
b=$\frac{2tan12°}{1-ta{n}^{2}12°}$=tan24°<$\frac{\sqrt{3}}{3}$<$\frac{\sqrt{3}}{2}$<cos24°,
c=$\sqrt{\frac{1-cos48°}{2}}$=sin24°$<\frac{1}{2}$<sin24°,
∴則a、b、c的大小關(guān)系為 c<b<a.
故選:A.

點(diǎn)評(píng) 本題主要考查三角恒等變換,特殊角的三角函數(shù)值的綜合應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.若0≤α<β<γ<2π且sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,求β-α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)y=x2-4ax+1在[1,3]上是增函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,1]B.$({-∞,\frac{1}{2}}]$C.$[{\frac{1}{2},\frac{3}{2}}]$D.$[{\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若函數(shù)$f(x)={log_{\frac{1}{2}}}({{x^2}-4x+3})$,則函數(shù)f(x)的定義域是(-∞,1)∪(3,+∞),單調(diào)遞減區(qū)間是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.為響應(yīng)國(guó)家“精準(zhǔn)扶貧,產(chǎn)業(yè)扶貧”的戰(zhàn)略,進(jìn)一步優(yōu)化能源消費(fèi)結(jié)構(gòu),某市決定在一地處山區(qū)的A縣推進(jìn)光伏發(fā)電項(xiàng)目.在該縣山區(qū)居民中隨機(jī)抽取50戶,統(tǒng)計(jì)其年用電量得到以下統(tǒng)計(jì)表.以樣本的頻率作為概率.
用電量(度)(0,200](200,400](400,600](600,800](800,1000]
戶數(shù)51510155
(I)在該縣山區(qū)居民中隨機(jī)抽取10戶,記其中年用電量不超過(guò)600度的戶數(shù)為X,求X的數(shù)學(xué)期望;
(II)已知該縣某山區(qū)自然村有居民300戶.若計(jì)劃在該村安裝總裝機(jī)容量為300千瓦的光伏發(fā)電機(jī)組,該機(jī)組所發(fā)電量除保證該村正常用電外,剩余電量國(guó)家電網(wǎng)以0.8元/度進(jìn)行收購(gòu).經(jīng)測(cè)算以每千瓦裝機(jī)容量年平均發(fā)電1000度,試估計(jì)該機(jī)組每年所發(fā)電量除保證正常用電外還能為該村創(chuàng)造直接收益多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若實(shí)數(shù)x、y滿足不等式組$\left\{\begin{array}{l}2x+y+2≥0\\ x+y+m≤0\\ y≥0\end{array}\right.$,且z=y-2x的最小值等于-2,則實(shí)數(shù)m的值等于-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.$f(x)=\frac{1}{2}({cosx-sinx})({cosx+sinx})+3a({sinx-cosx})+({4a-1})x$在$[{-\frac{π}{2},0}]$上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有800名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問(wèn)題:
分組頻數(shù)頻率
50.5~60.560.08
60.5~70.512      0.16
70.5~80.5150.2              
80.5~90.5240.32
90.5~100.5180.24
合計(jì)751
(Ⅰ)填充頻率分布表的空格(將答案直接填在答題卡的表格內(nèi));
(Ⅱ)補(bǔ)全頻率分布直方圖;
(Ⅲ)若成績(jī)?cè)?0.5~90.5分的學(xué)生為二等獎(jiǎng),問(wèn)獲得二等獎(jiǎng)的學(xué)生約為多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.定義在R上的函數(shù)f(x),g(x),其中f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=a2x3+x2+a3(a≠0)
(1)求f(x)和g(x)的解析式;
(2)命題P:對(duì)任意x∈[1,2],都有f(x)≥1,命題Q:存在x∈[-2,3],使g(x)≥17,若P∨Q為真,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案