【題目】若3cos(2α+β)+5cosβ=0,則tan(α+β)tanα的值為( )
A.±4
B.4
C.﹣4
D.1
【答案】C
【解析】解:3cos[(α+β)+α]+5cosβ=0, 即3cos(α+β)cosα﹣3sin(α+β)sinα+5cosβ=0.
3cos(α+β)cosα﹣3sin(α+β)sinα+5cos[(α+β)﹣α]=0,
3cos(α+β)cosα﹣3sin(α+β)sinα+5cos(α+β)cosα+5sin(α+β)sinα=0,
8cos(α+β)cosα+2sin(α+β)sinα=0,
8+2tan(α+β)tanα=0,
∴tan(α+β)tanα=﹣4.
故選C
【考點(diǎn)精析】根據(jù)題目的已知條件,利用兩角和與差的余弦公式的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握兩角和與差的余弦公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知2Sn=3n+3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足anbn=log3an , 求{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)沙市物價(jià)監(jiān)督部門(mén)為調(diào)研某公司新開(kāi)發(fā)上市的一種產(chǎn)品銷(xiāo)售價(jià)格的合理性,對(duì)某公司的該產(chǎn)品的銷(xiāo)量與價(jià)格進(jìn)行了統(tǒng)計(jì)分析,得到如下數(shù)據(jù)和散點(diǎn)圖:
定價(jià) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷(xiāo)量 | 1150 | 643 | 424 | 262 | 165 | 86 |
14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
(參考數(shù)據(jù): ,
)
(1)根據(jù)散點(diǎn)圖判斷, 與和與哪一對(duì)具有的線性相關(guān)性較強(qiáng)(給出判斷即可,不必說(shuō)明理由)?
(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立關(guān)于的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
(3)定價(jià)為多少元/ 時(shí),年銷(xiāo)售額的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線: ,曲線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)求曲線, 的極坐標(biāo)方程;
(Ⅱ)曲線: (為參數(shù), , )分別交, 于, 兩點(diǎn),當(dāng)取何值時(shí), 取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知多面體的底面是邊長(zhǎng)為2的正方形, 底面, ,且.
(Ⅰ)記線段的中點(diǎn)為,在平面內(nèi)過(guò)點(diǎn)作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線與平面所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在中, 的中點(diǎn)為,且,點(diǎn)在的延長(zhǎng)線上,且.固定邊,在平面內(nèi)移動(dòng)頂點(diǎn),使得圓與邊,邊的延長(zhǎng)線相切,并始終與的延長(zhǎng)線相切于點(diǎn),記頂點(diǎn)的軌跡為曲線.以所在直線為軸, 為坐標(biāo)原點(diǎn)如圖所示建立平面直角坐標(biāo)系.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)動(dòng)直線交曲線于兩點(diǎn),且以為直徑的圓經(jīng)過(guò)點(diǎn),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知α、β∈(0,π),且tanα、tanβ是方程x2﹣5x+6=0的兩根.
①求α+β的值.
②求cos(α﹣β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知: 、 、 是同一平面上的三個(gè)向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 ﹣ 垂直,求 與 的夾角θ
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次測(cè)驗(yàn)共有4個(gè)選擇題和2個(gè)填空題,每答對(duì)一個(gè)選擇題得20分,每答對(duì)一個(gè)填空題得10分,答錯(cuò)或不答得0分,若某同學(xué)答對(duì)每個(gè)選擇題的概率均為 ,答對(duì)每個(gè)填空題的概率均為 ,且每個(gè)題答對(duì)與否互不影響.
(1)求該同學(xué)得80分的概率;
(2)若該同學(xué)已經(jīng)答對(duì)了3個(gè)選擇題和1個(gè)填空題,記他這次測(cè)驗(yàn)的得分為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com