【題目】一次測驗(yàn)共有4個(gè)選擇題和2個(gè)填空題,每答對一個(gè)選擇題得20分,每答對一個(gè)填空題得10分,答錯(cuò)或不答得0分,若某同學(xué)答對每個(gè)選擇題的概率均為 ,答對每個(gè)填空題的概率均為 ,且每個(gè)題答對與否互不影響.
(1)求該同學(xué)得80分的概率;
(2)若該同學(xué)已經(jīng)答對了3個(gè)選擇題和1個(gè)填空題,記他這次測驗(yàn)的得分為ξ,求ξ的分布列和數(shù)學(xué)期望.

【答案】
(1)解:記“該同學(xué)得80分”為事件A,


(2)解:由題意知,ξ的可能取值為70、80、90、100,

,

∴ξ的分布列為:

ξ

70

80

90

100

P


【解析】(1)記“該同學(xué)得80分”為事件A,利用n次獨(dú)立重復(fù)試驗(yàn)概率計(jì)算公式能求出該同學(xué)得80分的概率.(2)由題意知,ξ的可能取值為70、80、90、100,分別求出相應(yīng)的概率,由此能求出ξ的分布列和數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若3cos(2α+β)+5cosβ=0,則tan(α+β)tanα的值為(
A.±4
B.4
C.﹣4
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=4x2+ax+2,不等式f(x)<c的解集為(﹣1,2).
(1)求a的值;
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí)f(x)=
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性(不必證明);
(3)若對任意的t∈R,不等式f(k﹣3t2)+f(t2+2t)≤0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知經(jīng)銷某種商品的電商在任何一個(gè)銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個(gè)銷售季度內(nèi)市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個(gè)銷售季度籌備了噸該商品.現(xiàn)以(單位:噸, )表示下一個(gè)銷售季度的市場需求量, (單位:萬元)表示該電商下一個(gè)銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.

(Ⅰ)根據(jù)頻率分布直方圖,估計(jì)一個(gè)銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大;

(Ⅱ)根據(jù)直方圖估計(jì)利潤不少于57萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國科研人員屠呦呦法相從青篙中提取物青篙素抗瘧性超強(qiáng),幾乎達(dá)到100%,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時(shí)間r(小時(shí))之間近似滿足如圖所示的曲線

(1)寫出第一服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)據(jù)進(jìn)一步測定:每毫升血液中含藥量不少于 微克時(shí),治療有效,求服藥一次后治療有效的時(shí)間是多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人玩轉(zhuǎn)盤游戲,該游戲規(guī)則是這樣的:一個(gè)質(zhì)地均勻的標(biāo)有12等分?jǐn)?shù)字格的轉(zhuǎn)盤(如圖),甲、乙兩人各轉(zhuǎn)轉(zhuǎn)盤一次,轉(zhuǎn)盤停止時(shí)指針?biāo)傅臄?shù)字為該人的得分.(假設(shè)指針不能指向分界線)現(xiàn)甲先轉(zhuǎn),乙后轉(zhuǎn),求下列事件發(fā)生的概率

(1)甲得分超過7分的概率.
(2)甲得7分,且乙得10分的概率
(3)甲得5分且獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的焦點(diǎn)為F,直線y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且.

1)求C的方程;

2)過F的直線C相交于A,B兩點(diǎn),若AB的垂直平分線C相較于M,N兩點(diǎn),且AM,B,N四點(diǎn)在同一圓上,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=a (a>0且a≠1),若f(lga)= ,則a=

查看答案和解析>>

同步練習(xí)冊答案