【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線: ,曲線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)求曲線, 的極坐標(biāo)方程;
(Ⅱ)曲線: (為參數(shù), , )分別交, 于, 兩點(diǎn),當(dāng)取何值時(shí), 取得最大值.
【答案】(Ⅰ):, : ;(Ⅱ).
【解析】試題分析:(1)利用, ,將直線直角坐標(biāo)方程化為極坐標(biāo)方程,先根據(jù) 將曲線參數(shù)方程化為直角坐標(biāo)方程,,再利用將曲線直角坐標(biāo)方程化為極坐標(biāo)方程.(2)先確定曲線的極坐標(biāo)方程為(, ),再代入曲線, 的極坐標(biāo)方程得,從而理二倍角公式及配角公式化簡(jiǎn)得,最后根據(jù)正弦函數(shù)性質(zhì)求最值.
試題解析:(Ⅰ)因?yàn)?/span>, , ,
的極坐標(biāo)方程為,
的普通方程為,即,對(duì)應(yīng)極坐標(biāo)方程為.
(Ⅱ)曲線的極坐標(biāo)方程為(, )
設(shè), ,則, ,
所以
,
又, ,
所以當(dāng),即時(shí), 取得最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 數(shù)列{an}滿足,2Sn=an(an+1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為An , 求證:對(duì)任意正整數(shù)n,都有An< 成立;
(3)數(shù)列{bn}滿足bn=( )nan , 它的前n項(xiàng)和為T(mén)n , 若存在正整數(shù)n,使得不等式(﹣2)n﹣1λ<Tn+ ﹣2n﹣1成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(1,2), =(cosα,sinα),設(shè) = ﹣t (t為實(shí)數(shù)).
(1)t=1 時(shí),若 ∥ ,求2cos2α﹣sin2α的值;
(2)若α= ,求| |的最小值,并求出此時(shí)向量 在 方向上的投影.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an},滿足a1=1, ,n∈N* . (Ⅰ)求證:數(shù)列 為等差數(shù)列;
(Ⅱ)設(shè) ,求T2n .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OPQ是半徑為1,圓心角為θ的扇形,A是扇形弧PQ上的動(dòng)點(diǎn),AB∥OQ,OP與AB交于點(diǎn)B,AC∥OP,OQ與AC交于點(diǎn)C.
(1)當(dāng)θ=時(shí),求點(diǎn)A的位置,使矩形ABOC的面積最大,并求出這個(gè)最大面積;
(2)當(dāng)θ=時(shí),求點(diǎn)A的位置,使平行四邊形ABOC的面積最大,并求出這個(gè)最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(sin ,sin ), =(cos ,cos ),且向量 與向量 共線.
(1)求證:sin( ﹣ )=0;
(2)若記函數(shù)f(x)=sin( ﹣ ),求函數(shù)f(x)的對(duì)稱(chēng)軸方程;
(3)求f(1)+f(2)+f(3)+…+f(2013)的值;
(4)如果已知角0<A<B<π,且A+B+C=π,滿足f( )=f( )= ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在上的最小值;
(2)若關(guān)于的不等式只有兩個(gè)整數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中國(guó)人均讀書(shū)4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書(shū)),比韓國(guó)的11本、法國(guó)的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書(shū)最少的國(guó)家.”這個(gè)論斷被各種媒體反復(fù)引用.出現(xiàn)這樣的統(tǒng)計(jì)結(jié)果無(wú)疑是令人尷尬的,而且和其他國(guó)家相比,我國(guó)國(guó)民的閱讀量如此之低,也和我國(guó)是傳統(tǒng)的文明古國(guó)、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書(shū)興趣,特舉辦讀書(shū)活動(dòng),準(zhǔn)備進(jìn)一定量的書(shū)籍豐富小區(qū)圖書(shū)站,由于不同年齡段需看不同類(lèi)型的書(shū)籍,為了合理配備資源,現(xiàn)對(duì)小區(qū)內(nèi)看書(shū)人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天名讀書(shū)者進(jìn)行調(diào)查,將他們的年齡分成6段:,,,,,后得到如圖所示的頻率分布直方圖.問(wèn):
(1)估計(jì)在40名讀書(shū)者中年齡分布在的人數(shù);
(2)求40名讀書(shū)者年齡的平均數(shù)和中位數(shù);
(3)若從年齡在的讀書(shū)者中任取2名,求這兩名讀書(shū)者年齡在的人數(shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com