【題目】已知圓的標(biāo)準(zhǔn)方程為,為圓上的動(dòng)點(diǎn),直線的方程為,動(dòng)點(diǎn)在直線上.

1)求的最小值,并求此時(shí)點(diǎn)的坐標(biāo);

2)若點(diǎn)的坐標(biāo)為,過作直線與圓交于,兩點(diǎn),當(dāng)時(shí),求直線的方程.

【答案】1的最小值為,此時(shí)點(diǎn);(2

【解析】

1)轉(zhuǎn)化為圓心到直線的距離,求出距離減去半徑可得;(2)利用圓的弦長結(jié)合勾股定理可求.

解:(1)依題意知:的最小值為圓心到直線的距離減去圓的半徑,且點(diǎn),

,∴的最小值為

又過圓心且與直線垂直的直線方程為:,

聯(lián)立解得

綜上可知,的最小值為,此時(shí)點(diǎn);

2)把點(diǎn)代入直線的方程可得,即

,半徑得圓心到直線的距離,

當(dāng)直線斜率不存在時(shí),直線的方程為:,符合題意,

當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為:,即,

,解得,故直線的方程為:.

綜上可知,直線的方程為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的長軸長為6,且橢圓與圓 的公共弦長為.

(1)求橢圓的方程.

(2)過點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn) ,試判斷在軸上是否存在點(diǎn),使得為以為底邊的等腰三角形.若存在,求出點(diǎn)的橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大家知道,莫言是中國首位獲得諾貝爾獎(jiǎng)的文學(xué)家,國人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取50名同學(xué)調(diào)查對(duì)莫言作品的了解程度,結(jié)果如下:

閱讀過莫言的
作品數(shù)(篇)

0~25

26~50

51~75

76~100

101~130

男生

3

6

11

18

12

女生

4

8

13

15

10

(Ⅰ)試估計(jì)該校學(xué)生閱讀莫言作品超過50篇的概率;
(Ⅱ)對(duì)莫言作品閱讀超過75篇的則稱為“對(duì)莫言作品非常了解”,否則為“一般了解”.根據(jù)題意完成下表,并判斷能否有75%的把握認(rèn)為對(duì)莫言作品的非常了解與性別有關(guān)?

非常了解

一般了解

合計(jì)

男生

女生

合計(jì)

附:K2=

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|,當(dāng)a<b<c時(shí),f(a)>f(c)>f(b),那么正確的結(jié)論是( 。
A.2a>2b
B.2a>2c
C.2﹣a<2c
D.2a+2c<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),(i)求曲線在點(diǎn)處的切線方程;

(ii)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,攝影愛好者在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測(cè)得立柱頂端O的仰角和立柱底部B的俯角均為,已知攝影愛好者的身高約為米(將眼睛S距地面的距離SA米處理).

(1)求攝影愛好者到立柱的水平距離AB和立柱的高度OB

(2)立柱的頂端有一長為2米的彩桿MN,且MN繞其中點(diǎn)O在攝影愛好者與立柱所在的平面內(nèi)旋轉(zhuǎn).在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影愛好者觀察彩桿MN的視角(設(shè)為)是否存在最大值?若存在,請(qǐng)求出取最大值時(shí)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)六個(gè)從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有幾種?

(2)把5件不同產(chǎn)品擺成一排,若產(chǎn)品與產(chǎn)品相鄰,且產(chǎn)品與產(chǎn)品不相鄰,則不同的擺法有幾種?

(3)某次聯(lián)歡會(huì)要安排3個(gè)歌舞類節(jié)目、2個(gè)小品類節(jié)目和1個(gè)相聲類節(jié)目的演出順序,則同類節(jié)目不相鄰的排法有幾種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=-sin2x+mcosx-1,x∈[].

(1)若fx)的最小值為-4,求m的值;

(2)當(dāng)m=2時(shí),若對(duì)任意x1x2∈[-]都有|fx1)-fx2)|恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域在R上的函數(shù)f(x)=|x+1|+|x﹣2|的最小值為a.
(1)求a的值;
(2)若p,q,r為正實(shí)數(shù),且p+q+r=a,求證:p2+q2+r2≥3.

查看答案和解析>>

同步練習(xí)冊(cè)答案