【題目】如圖,攝影愛好者在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為,已知攝影愛好者的身高約為米(將眼睛S距地面的距離SA按米處理).
(1)求攝影愛好者到立柱的水平距離AB和立柱的高度OB;
(2)立柱的頂端有一長為2米的彩桿MN,且MN繞其中點O在攝影愛好者與立柱所在的平面內旋轉.在彩桿轉動的任意時刻,攝影愛好者觀察彩桿MN的視角(設為)是否存在最大值?若存在,請求出取最大值時的值;若不存在,請說明理由.
【答案】(1) AB為3米 OB為2米 (2) 當視角∠MSN取最大值時,cosθ=.
【解析】
(1)如圖,作SC⊥OB于C,
依題意∠CSB=30°,∠ASB=60°.
又SA=,故在Rt△SAB中,可求得AB==3,
即攝影愛好者到立柱的水平距離AB為3米.
在Rt△SCO中,SC=3,∠CSO=30°,OC=SC·tan 30°=,
又BC=SA=,故OB=2,即立柱的高度OB為2米.
(2)方法一:如圖,以O為原點,以水平方向向右為x軸正方向建立平面直角坐標系,連接SM,SN,
設M(cosα,sinα),α∈[0,2π),
則N(-cosα,-sinα),由(1)知S(3,-).
故=(cosα-3,sinα+),
=(-cosα-3,-sinα+),
∵·=(cosα-3)·(-cosα-3)+(sinα+)·(-sinα+)=11.
||·||=·
=·
=
=.
由α∈[0,2π)知||·||∈[11,13].
所以cos∠MSN=∈[,1],易知∠MSN為銳角,
故當視角∠MSN取最大值時,cosθ=.
方法二:∵cos∠MOS=-cos∠NOS,
∴=-
于是得SM2+SN2=26從而
cosθ=≥=.
又∠MSN為銳角,
故當視角∠MSN取最大值時,cosθ=.
科目:高中數(shù)學 來源: 題型:
【題目】2018年10月19日,由中國工信部、江西省政府聯(lián)合主辦的世界VR(虛擬現(xiàn)實)產(chǎn)業(yè)大會在南昌開幕,南昌在紅谷灘新區(qū)建立VR特色小鎮(zhèn)項目.現(xiàn)某廠商抓住商機在去年用450萬元購進一批VR設備,經(jīng)調試后今年投入使用,計劃第一年維修、保養(yǎng)費用22萬元,從第二年開始,每年所需維修、保養(yǎng)費用比上一年增加4萬元,該設備使用后,每年的總收入為180萬元,設使用x年后設備的盈利額為y萬元.
(1)寫出y與x之間的函數(shù)關系式;
(2)使用若干年后,當年平均盈利額達到最大值時,求該廠商的盈利額.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】遼寧號航母紀念章從2012年10月5日起開始上市,通過市場調查,得到該紀念章每枚的市場價(單位:元)與上市時間(單位:天)的數(shù)據(jù)如下:
上市時間天 | |||
市場價元 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個恰當?shù)暮瘮?shù)描述遼寧號航母紀念章的市場價與上市時間的變化關系:①;②;③;
(2)利用你選取的函數(shù),求遼寧號航母紀念章市場價最低時的上市天數(shù)及最低的價格;
(3)設你選取的函數(shù)為,若對任意實數(shù),關于的方程恒有個想異實數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列滿足4Sn=(an+1)2 .
(1)求數(shù)列{an}的通項公式;
(2)設bn= , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的標準方程為,為圓上的動點,直線的方程為,動點在直線上.
(1)求的最小值,并求此時點的坐標;
(2)若點的坐標為,過作直線與圓交于,兩點,當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓心在y軸上,半徑為1,且過點(1,2)的圓的方程為( )
A.x2+(y﹣2)2=1
B.x2+(y+2)2=1
C.(x﹣1)2+(y﹣3)2=1
D.x2+(y﹣3)2=1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)其圖像的一個對稱中心是將的圖像向左平移個單位長度后得到函數(shù)的圖像。
(1)求函數(shù)的解析式;
(2)若對任意當時,都有求實數(shù)的最大值;
(3)若對任意實數(shù)在上與直線的交點個數(shù)不少于6個且不多于10個,求正實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本固定成本生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列關于函數(shù)的判斷正確的是( 。
①的解集是;
②極小值,是極大值;
③沒有最小值,也沒有最大值.
A. ①③ B. ①②③ C. ② D. ①②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com