14.設(shè)等比數(shù)列{an}的公比q=2,前n項(xiàng)和為Sn,S4=λa4,則λ為$\frac{15}{8}$.

分析 根據(jù)等比數(shù)列的通項(xiàng)公式以及前n項(xiàng)和公式進(jìn)行求解即可.

解答 解:∵等比數(shù)列{an}的公比q=2,
∴由S4=λa4,得$\frac{{a}_{1}(1-{2}^{4})}{1-2}$=λ23a1=8λa1,
即15=8λ,
故λ=$\frac{15}{8}$,
故答案為:$\frac{15}{8}$

點(diǎn)評(píng) 本題主要考查等比數(shù)列的應(yīng)用,根據(jù)等比數(shù)列的通項(xiàng)公式以及前n項(xiàng)和公式,建立方程是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+3,x>-1}\\{{2}^{x+1}-1,x≤-1}\end{array}\right.$,已知f(a)=3,則a的值是( 。
A.0B.-2C.0或-2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.某幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若某市6所中學(xué)參加中學(xué)生合唱比賽的得分用莖葉圖表示如圖,其中莖為十位數(shù),葉為個(gè)位數(shù),則這組數(shù)據(jù)的方差是$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,四邊形ABCD為矩形,PB=2,BC=3,PA⊥平面ABCD.
(1)證明:平面PCD⊥平面PAD;
(2)當(dāng)AB的長(zhǎng)為多少時(shí),點(diǎn)B到平面ACD的距離為$\frac{3}{2}$?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=1$的焦點(diǎn)到漸近線的距離為(  )
A.$2\sqrt{3}$B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列函數(shù),是偶函數(shù),且周期為π的是(  )
A.y=cos2x-sin2xB.y=sin2x+cos2xC.y=cos2x-sin2xD.y=sin2x+cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.“a=-1”是“直線ax+3y+2=0與直線x+(a-2)y+1=0平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)D為△ABC所在平面內(nèi)一點(diǎn),且$\overrightarrow{BC}=3\overrightarrow{BD}$,則$\overrightarrow{AD}$=( 。
A.$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$B.$\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$C.$\frac{4}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$D.$\frac{2}{3}\overrightarrow{AB}+\frac{5}{3}\overrightarrow{AC}$

查看答案和解析>>

同步練習(xí)冊(cè)答案