4.設(shè)D為△ABC所在平面內(nèi)一點,且$\overrightarrow{BC}=3\overrightarrow{BD}$,則$\overrightarrow{AD}$=( 。
A.$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$B.$\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$C.$\frac{4}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$D.$\frac{2}{3}\overrightarrow{AB}+\frac{5}{3}\overrightarrow{AC}$

分析 根據(jù)向量的三角形法則進行轉(zhuǎn)化求解即可.

解答 解:∵$\overrightarrow{BC}=3\overrightarrow{BD}$
∴$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$=$\frac{1}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$),
則$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}$+$\frac{1}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$,
故選:A

點評 本題主要考查向量的分解,根據(jù)向量三角形法則進行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)等比數(shù)列{an}的公比q=2,前n項和為Sn,S4=λa4,則λ為$\frac{15}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在四棱錐A-BCDE中,AB⊥平面BCDE,四邊形BCDE為矩形,F(xiàn)、G分別為AC、AE的中點,AB=BC=2,BE=$\sqrt{2}$.
(Ⅰ)證明:EF⊥BD;
(Ⅱ)求點A到平面BFG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)$\frac{2}{1+i}$=( 。
A.2-iB.2-2iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=(x-1)ex+ax2,a∈R.
(Ⅰ)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)有兩個零點,試求a的取值范圍;
( III)設(shè)函數(shù)g(x)=lnx+x-ex+1,當(dāng)a=0時,證明f(x)-g(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線l:x+4y=2與圓C:x2+y2=1交于A、B兩點,O為坐標(biāo)原點,若直線OA、OB的傾斜角分別為α、β,則cosα+cosβ=( 。
A.$\frac{18}{17}$B.$-\frac{12}{17}$C.$-\frac{4}{17}$D.$\frac{4}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,已知點A(-1,0)、B(1,0)、C(0,-1),N為y軸上的點,MN垂直于y軸,且點M滿足$\overrightarrow{AM}•\overrightarrow{BM}=\overrightarrow{ON}•\overrightarrow{CM}$(O為坐標(biāo)原點),點M的軌跡為曲線T.
(Ⅰ)求曲線T的方程;
(Ⅱ)設(shè)點P(P不在y軸上)是曲線T上任意一點,曲線T在點P處的切線l與直線$y=-\frac{5}{4}$交于點Q,試探究以PQ為直徑的圓是否過一定點?若過定點,求出該定點的坐標(biāo),若不過定點,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ln x.
(1)判斷函數(shù)$g(x)=af(x)-\frac{1}{x}$的單調(diào)性;
(2)若對任意的x>0,不等式f(x)≤ax≤ex恒成立,求實數(shù)a的取值范圍;
(3)若x1>x2>0,求證:$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>\frac{{2{x_2}}}{{{x_1}^2+{x_2}^2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}-2\overrightarrow$=0,($\overrightarrow{a}-\overrightarrow$)•$\overrightarrow$=2,則|$\overrightarrow$|=( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案