【題目】

對(duì)于各項(xiàng)均為整數(shù)的數(shù)列,如果(=1,23,…)為完全平方數(shù),則稱數(shù)

具有性質(zhì)

不論數(shù)列是否具有性質(zhì),如果存在與不是同一數(shù)列的,且

時(shí)滿足下面兩個(gè)條件:的一個(gè)排列;數(shù)列具有性質(zhì),則稱數(shù)列具有變換性質(zhì)

I)設(shè)數(shù)列的前項(xiàng)和,證明數(shù)列具有性質(zhì);

II)試判斷數(shù)列12,3,45和數(shù)列1,2,3,11是否具有變換性質(zhì),具有此性質(zhì)的數(shù)列請(qǐng)寫出相應(yīng)的數(shù)列,不具此性質(zhì)的說明理由;

III)對(duì)于有限項(xiàng)數(shù)列1,2,3,,某人已經(jīng)驗(yàn)證當(dāng)時(shí),

數(shù)列具有變換性質(zhì),試證明:當(dāng)時(shí),數(shù)列也具有變換性質(zhì)

【答案】I)證明見解析.(II)數(shù)列12,3,45具有變換P性質(zhì),數(shù)列3,2,1,54.?dāng)?shù)列1,2,3,,11不具有變換P性質(zhì)理由見詳解;(III)證明見解析.

【解析】

I)當(dāng)時(shí),

所以是完全平方數(shù),

數(shù)列具有“P性質(zhì)

II)數(shù)列1,2,3,4,5具有變換P性質(zhì)

數(shù)列3,2,15,4

數(shù)列12,3,11不具有變換P性質(zhì)

因?yàn)?/span>11,4都只有5的和才能構(gòu)成完全平方數(shù)

所以數(shù)列1,23,,11不具有變換P性質(zhì)

III)設(shè)

注意到

由于

所以

所以

因?yàn)楫?dāng)時(shí),數(shù)列具有變換P性質(zhì)

所以1,2,4m+4-j-1可以排列成

使得都是平方數(shù)

另外,可以按相反順序排列,

即排列為

使得

所以1,2,可以排列成

滿足都是平方數(shù).

即當(dāng)時(shí),數(shù)列A也具有變換P性質(zhì)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩定點(diǎn),點(diǎn)是平面內(nèi)的動(dòng)點(diǎn),且,記的軌跡是

(1)求曲線的方程;

(2)過點(diǎn)引直線交曲線兩點(diǎn),設(shè),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了進(jìn)一步推動(dòng)全市學(xué)習(xí)型黨組織、學(xué)習(xí)型社會(huì)建設(shè),某市組織開展“學(xué)習(xí)強(qiáng)國(guó)”知識(shí)測(cè)試,每人測(cè)試文化、經(jīng)濟(jì)兩個(gè)項(xiàng)目,每個(gè)項(xiàng)目滿分均為60分.從全體測(cè)試人員中隨機(jī)抽取了100人,分別統(tǒng)計(jì)他們文化、經(jīng)濟(jì)兩個(gè)項(xiàng)目的測(cè)試成績(jī),得到文化項(xiàng)目測(cè)試成績(jī)的頻數(shù)分布表和經(jīng)濟(jì)項(xiàng)目測(cè)試成績(jī)的頻率分布直方圖如下:

經(jīng)濟(jì)項(xiàng)目測(cè)試成績(jī)頻率分布直方圖

分?jǐn)?shù)區(qū)間

頻數(shù)

2

3

5

15

40

35

文化項(xiàng)目測(cè)試成績(jī)頻數(shù)分布表

將測(cè)試人員的成績(jī)劃分為三個(gè)等級(jí)如下:分?jǐn)?shù)在區(qū)間內(nèi)為一般,分?jǐn)?shù)在區(qū)間內(nèi)為良好,分?jǐn)?shù)在區(qū)間內(nèi)為優(yōu)秀.

(1)在抽取的100人中,經(jīng)濟(jì)項(xiàng)目等級(jí)為優(yōu)秀的測(cè)試人員中女生有14人,經(jīng)濟(jì)項(xiàng)目等級(jí)為一般或良好的測(cè)試人員中女生有34人.填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認(rèn)為“經(jīng)濟(jì)項(xiàng)目等級(jí)為優(yōu)秀”與性別有關(guān)?

優(yōu)秀

一般或良好

合計(jì)

男生數(shù)

女生數(shù)

合計(jì)

(2)用這100人的樣本估計(jì)總體,假設(shè)這兩個(gè)項(xiàng)目的測(cè)試成績(jī)相互獨(dú)立.

(i)從該市測(cè)試人員中隨機(jī)抽取1人,估計(jì)其“文化項(xiàng)目等級(jí)高于經(jīng)濟(jì)項(xiàng)目等級(jí)”的概率.

(ii)對(duì)該市文化項(xiàng)目、經(jīng)濟(jì)項(xiàng)目的學(xué)習(xí)成績(jī)進(jìn)行評(píng)價(jià).

附:

0.150

0.050

0.010

2.072

3.841

6.635

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓上一點(diǎn),為橢圓長(zhǎng)軸上一點(diǎn),為坐標(biāo)原點(diǎn),有下列結(jié)論:①存在點(diǎn),,使得為等邊三角形;②不存在點(diǎn),,使得為等邊三角形;③存在點(diǎn),,使得;④不存在點(diǎn),,使得.其中,所有正確結(jié)論的序號(hào)是( )

A.①④B.①③C.②④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】、兩個(gè)班共有65名學(xué)生,為調(diào)查他們的引體向上鍛煉情況,通過分層抽樣獲得了部分學(xué)生引體向上的測(cè)試數(shù)據(jù)(單位:個(gè)),用莖葉圖記錄如下:

(1)試估計(jì)班的學(xué)生人數(shù);

(2)從班和班抽出的學(xué)生中,各隨機(jī)選取一人,班選出的人記為甲,班選出的人記為乙,假設(shè)所有學(xué)生的測(cè)試相對(duì)獨(dú)立,比較甲、乙兩人的測(cè)試數(shù)據(jù)得到隨機(jī)變量.規(guī)定:當(dāng)甲的測(cè)試數(shù)據(jù)比乙的測(cè)試數(shù)據(jù)低時(shí),記;當(dāng)甲的測(cè)試數(shù)據(jù)與乙的測(cè)試數(shù)據(jù)相等時(shí),記;當(dāng)甲的測(cè)試數(shù)據(jù)比乙的測(cè)試數(shù)據(jù)高時(shí),記.求隨機(jī)變量的分布列及數(shù)學(xué)期望.

(3)再?gòu)?/span>、兩個(gè)班中各隨機(jī)抽取一名學(xué)生,他們引體向上的測(cè)試數(shù)據(jù)分別是10,8(單位:個(gè)),這2個(gè)新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記,表格中數(shù)據(jù)的平均數(shù)記為,試判斷的大小.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車間隔時(shí)間x與乘客等候人數(shù)y之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):

間隔時(shí)間x/

10

11

12

13

14

15

等候人數(shù)y/

23

25

26

29

28

31

調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)y的差,若差值的絕對(duì)值都不超過1,則稱所求方程是“恰當(dāng)回歸方程”.

1)從這6組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù),求剩下的2組數(shù)據(jù)的間隔時(shí)間相鄰的概率;

2)若選取的是中間4組數(shù)據(jù),求y關(guān)于x的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長(zhǎng)方體中,,點(diǎn)E是棱上的一個(gè)動(dòng)點(diǎn),若平面交棱于點(diǎn),給出下列命題:

①四棱錐的體積恒為定值;

②存在點(diǎn),使得平面;

③對(duì)于棱上任意一點(diǎn),在棱上均有相應(yīng)的點(diǎn),使得平面

④存在唯一的點(diǎn),使得截面四邊形的周長(zhǎng)取得最小值.

其中真命題的是____________.(填寫所有正確答案的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè).如圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36.

(1)求樣本容量及樣本中凈重大于或等于96克并且小于102克的產(chǎn)品的個(gè)數(shù);

(2)已知這批產(chǎn)品中每個(gè)產(chǎn)品的利潤(rùn)y(單位:元)與產(chǎn)品凈重x(單位:克)的關(guān)系式為求這批產(chǎn)品平均每個(gè)的利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知兩點(diǎn),動(dòng)點(diǎn)Py軸上的攝影是H,且,

(1)求動(dòng)點(diǎn)P的軌跡方程;

(2)設(shè)直線,的兩個(gè)斜率存在,分別記為,,若,求點(diǎn)P的坐標(biāo);

(3)若經(jīng)過點(diǎn)的直線l與動(dòng)點(diǎn)P的軌跡有兩個(gè)交點(diǎn)為T、Q,當(dāng)時(shí),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案