【題目】已知函數(shù)f(x)=2sin(3ωx+ ),其中ω>0
(1)若f(x+θ)是周期為2π的偶函數(shù),求ω及θ的值;
(2)若f(x)在(0, ]上是增函數(shù),求ω的最大值;
(3)當(dāng)ω= 時(shí),將函數(shù)f(x)的圖象向右平移 個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[0,b](b>0)上至少含有10個(gè)零點(diǎn),求b的最小值.

【答案】
(1)

解:由函數(shù)解析式f(x)=2sin(3ωx+ ),ω>0整理可得

f(x+θ)=2sin[3ω(x+θ)+ ]=2sin(3ωx+3ωθ+ ),

由f(x+θ)的周期為2π,根據(jù)周期公式2π= ,且ω>0,得ω= ,

∴f(x+θ)=2sin(x+θ+ ),

∵f(x+θ)為偶函數(shù),定義域x∈R關(guān)于y軸對(duì)稱,

令g(x)=f(x+θ)=2sin(x+θ+ ),

∴g(﹣x)=g(x),

2sin(x+θ+ )=2sin(﹣x+θ+ ),

∴x+θ+ =π﹣(﹣x+θ+ )+2kπ,k∈Z,

∴θ=kπ+ ,k∈Z.∴ω= ,θ=kπ+ ,k∈Z.


(2)

解:∵ω>0,

∴當(dāng)x∈(0, ]時(shí),3ωx+ ∈( ,ωπ+ ],

設(shè)u=3ωx+ ,由于y=sinu在( , ]上是增函數(shù),在[ ]上是減函數(shù),所以ωπ+ ,∴ω≤ ,∴ω的最大值為


(3)

解:當(dāng)ω= 時(shí),將函數(shù)f(x)的圖象向右平移 個(gè)單位,再向上平移1個(gè)單位,得到y(tǒng)=2sin2x+1的圖象,所以g(x)=2sin2x+1,

令g(x)=0,得x=kπ+ 或x=kπ+ ,k∈Z,

所以在[0,π]上恰好有兩個(gè)零點(diǎn),

若y=g(x)在[0,b]上有10個(gè)零點(diǎn),

則b不小于第10個(gè)零點(diǎn)的橫坐標(biāo)即可,即b的最小值為4π+ =


【解析】(1)根據(jù)周期公式2π= ,且ω>0,得ω值,根據(jù)f(x+θ)是偶函數(shù),f(﹣x+θ)=f(x+θ),可得θ的值;(2)根據(jù)正弦函數(shù)的單調(diào)性,可得ωπ+ ,解得答案;(3)若y=g(x)在[0,b]上有10個(gè)零點(diǎn),則b不小于第10個(gè)零點(diǎn)的橫坐標(biāo)即可,進(jìn)而得到答案.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f1(x),f2(x),h(x),如果存在實(shí)數(shù)a,b使得h(x)=af1(x)+bf2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)給出函數(shù) ,h(x)是否為f1(x), f2(x)的生成函數(shù)?并說(shuō)明理由;
(2)設(shè) ,生成函數(shù)h(x).若不等式3h2(x)+2h(x)+t>0在x∈[2,4]上恒成立,求實(shí)數(shù)t的取值范圍;
(3)設(shè) ,取a>0,b>0,生成函數(shù)h(x)圖象的最低點(diǎn)坐標(biāo)為(2,8).若對(duì)于任意正實(shí)數(shù)x1 , x2且x1+x2=1.試問(wèn)是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個(gè)m的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在四棱錐V﹣ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,其它四個(gè)側(cè)面都是側(cè)棱長(zhǎng)為 的等腰三角形.
(1)求二面角V﹣AB﹣C的平面角的大;
(2)求四棱錐V﹣ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=1﹣nan(n∈N*
(1)計(jì)算a1 , a2 , a3 , a4;
(2)猜想an的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= x2+2ax,g(x)=3a2lnx+b,設(shè)兩曲線y=f(x),y=g(x)有公共點(diǎn),且在該點(diǎn)處的切線相同,則a∈(0,+∞)時(shí),實(shí)數(shù)b的最大值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓錐如圖①所示,圖②是它的正(主)視圖.已知圓的直徑為 是圓周上異于的一點(diǎn), 的中點(diǎn).

(I)求該圓錐的側(cè)面積S;

(II)求證:平面⊥平面;

(III)若∠CAB=60°,在三棱錐中,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=3x﹣3ax+b ,
(1)求a,b的值;
(2)判斷f(x)的奇偶性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校擬建一塊周長(zhǎng)為400m的操場(chǎng)如圖所示,操場(chǎng)的兩頭是半圓形,中間區(qū)域是矩形,學(xué)生做操一般安排在矩形區(qū)域,為了能讓學(xué)生的做操區(qū)域盡可能大,試問(wèn)如何設(shè)計(jì)矩形的長(zhǎng)和寬?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=ax3+bx2+cx的極小值為﹣8,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過(guò)點(diǎn) ,如圖所示,
(1)求f(x)的解析式;
(2)若對(duì)x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案