7.如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),A是橢圓C的上頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°
(1)求橢圓C的離心率;
(2)若a=2,求△AF1B的面積.

分析 (1)由題意可知:△AF1B為等邊三角形,因此a=2c,e=$\frac{c}{a}$=$\frac{c}{2c}$=$\frac{1}{2}$,即可求得橢圓C的離心率;
(2)由題意題意可知:當(dāng)a=2,則c=1,由b2=a2-c2=3,即可求得橢圓方程,由直線的斜率k=-tan∠AF1F2=-$\sqrt{3}$,即可求得直線方程,代入橢圓方程,即可求得B點(diǎn)坐標(biāo),由${S}_{A{F}_{1}B}$=${S}_{A{F}_{1}{F}_{2}}$+${S}_{B{F}_{1}{F}_{2}}$=$\frac{1}{2}$丨F1F2丨•丨AO丨+$\frac{1}{2}$丨F1F2丨•丨yB丨,代入即可求得△AF1B的面積.

解答 解:(1)由題意可知,△AF1B為等邊三角形,
∴a=2c,
∴e=$\frac{c}{a}$=$\frac{c}{2c}$=$\frac{1}{2}$,
橢圓C的離心率$\frac{1}{2}$;
(2)由(1)可知:a=2c,a=2,c=1,則b2=a2-c2,b=$\sqrt{3}$,
∴橢圓方程為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,
∴A(0,$\sqrt{3}$),F(xiàn)2(1,0),
∴直線AC的斜率k=-tan∠AF1F2=-$\sqrt{3}$,
∴直線AC的方程為y-0=-$\sqrt{3}$(x-1)=-$\sqrt{3}$x+$\sqrt{3}$,
∴$\left\{\begin{array}{l}{y=-\sqrt{3}x+\sqrt{3}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{8}{5}}\\{y=-\frac{3\sqrt{3}}{5}}\end{array}\right.$或$\left\{\begin{array}{l}{x=0}\\{y=\sqrt{3}}\end{array}\right.$(舍)
∴點(diǎn)B的坐標(biāo)為($\frac{8}{5}$,-$\frac{3\sqrt{3}}{5}$),
所以
${S}_{A{F}_{1}B}$=${S}_{A{F}_{1}{F}_{2}}$+${S}_{B{F}_{1}{F}_{2}}$=$\frac{1}{2}$丨F1F2丨•丨AO丨+$\frac{1}{2}$丨F1F2丨•丨yB丨=$\frac{1}{2}$•2•$\sqrt{3}$+$\frac{1}{2}$•2•$\frac{3\sqrt{3}}{5}$=$\frac{8\sqrt{3}}{5}$,
∴△AF1B的面積$\frac{8\sqrt{3}}{5}$.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì),考查直線與橢圓的位置關(guān)系,考查三角形的面積公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某工廠生產(chǎn)的廢氣經(jīng)過(guò)過(guò)慮后排放,過(guò)慮過(guò)程中廢氣的污染物數(shù)量P(單位:毫克/升)與時(shí)間t(單位:小時(shí))間的關(guān)系為P=P0e-kt(P0,k均為正常數(shù)).如果經(jīng)過(guò)6個(gè)小時(shí)過(guò)慮還剩80%的污染物,為了使剩余污染物不高于51.2%,則至少需要多少小時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某公司將進(jìn)一批單價(jià)為8元的商品,若按10/個(gè)銷售,每天可賣出100個(gè)若銷售價(jià)上漲1元/個(gè),則每天的銷售量就少10個(gè).
(1)設(shè)商品的銷售上漲x元/個(gè)(0≤x≤10,x∈N),每天的利潤(rùn)為y元試用列表法表示函數(shù)y=f(x)
(2)求銷售價(jià)為13元/個(gè)時(shí)每天銷售利潤(rùn)
(3)如銷售利潤(rùn)為360元,那么銷售價(jià)上漲了多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)f(x)為奇函數(shù),且f(x)在(-∞,0)內(nèi)是增函數(shù),f(-3)=0,則xf(x)>0的解集為(-∞,-3)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.命題“若a>b,則a2>b2”的逆命題是“若a2>b2,則a>b” .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖所示為求函數(shù)y=f(x)值的一個(gè)程序框圖.當(dāng)輸出結(jié)果為4時(shí),則輸入的x的值為2或-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知x>0,y>0,且3x+2y=xy,若2x+3y>t2+5t+1恒成立,則實(shí)數(shù)t的取值范圍( 。
A.(-∞,-8)∪(3,+∞)B.(-8,3)C.(-∞,-8)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.關(guān)于x的方程-3cos2x+5sinx+1=0的解集為{x|x=arcsin$\frac{1}{3}$+2kπ,或x=π-arcsin$\frac{1}{3}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知f(1-x)=1-f(x),且an=f(0)+f(${\frac{1}{n}}$)+f(${\frac{2}{n}}$)+…+f(${\frac{n-1}{n}}$)+f(1),則{${\frac{1}{{{a_n}{a_{n+1}}}}}\right.$}前100項(xiàng)之和為( 。
A.1B.$\frac{1}{2}$C.$\frac{99}{50}$D.$\frac{100}{51}$

查看答案和解析>>

同步練習(xí)冊(cè)答案