【題目】已知數(shù)列{an}滿足a1=1,an+an+1=( )n , Sn=a1+3a2+32a3+…+3n﹣1an , 利用類似等比數(shù)列的求和方法,可求得4Sn﹣3nan= .
科目:高中數(shù)學 來源: 題型:
【題目】下列關系式中正確的是( )
A.sin 11°<cos 10°<sin 168°
B.sin 168°<sin 11°<cos 10°
C.sin 11°<sin 168°<cos 10°
D.sin 168°<cos 10°<sin 11°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M的圓心M在x軸上,半徑為1,直線 ,被圓M所截的弦長為 ,且圓心M在直線l的下方.
(I)求圓M的方程;
(II)設A(0,t),B(0,t+6)(﹣5≤t≤﹣2),若圓M是△ABC的內切圓,求△ABC的面積S的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}的前n項和為Sn , 已知a3=3,S11=0.
(1)求數(shù)列{an}的通項公式;
(2)當n為何值時,Sn最大,并求Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=3x2﹣2x,數(shù)列{an}的前n項和為Sn , 點(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖像上.
(1)求數(shù)列{an}的通項公式;
(2)設bn= ,Tn是數(shù)列{bn}的前n項和,求使得Tn< 對所有n∈N*都成立的最小正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(﹣ ,0),B( ,0),動點E滿足直線EA與直線EB的斜率之積為﹣ .
(1)求動點E的軌跡C的方程;
(2)設過點F(1,0)的直線l1與曲線C交于點P,Q,記點P到直線l2:x=2的距離為d.
(。┣ 的值;
(ⅱ)過點F作直線l1的垂線交直線l2于點M,求證:直線OM平分線段PQ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com