【題目】已知f(x)=3x2﹣2x,數(shù)列{an}的前n項(xiàng)和為Sn , 點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖像上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn< 對所有n∈N*都成立的最小正整數(shù)m.
【答案】
(1)解:∵f(x)=3x2﹣2x,數(shù)列{an}的前n項(xiàng)和為Sn,
點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖像上,
∴ ,
當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=(3n2﹣2n)﹣[3(n﹣1)2﹣2(n﹣1)]=6n﹣5,
當(dāng)n=1時(shí),a1=S1=3﹣2=1,滿足上式,
∴an=6n﹣5,n∈N*
(2)解:由(1)得 = = ,
∴Tn=
= ,
∴使得Tn< 對所有n∈N*都成立的最小正整數(shù)m必須且僅須滿足 ,
即m≥10,∴滿足要求的最小整數(shù)m=10
【解析】(1)由已知條件推導(dǎo)出 ,由此能求出an=6n﹣5,n∈N* . (2)由 = = ,利用裂項(xiàng)求和法求出Tn= ,由此能求出滿足要求的最小整數(shù)m=10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+x(a∈R,a≠0).
(1)當(dāng)a>0時(shí),用作差法證明:f( )< [f(x1)+f(x2)];
(2)已知當(dāng)x∈[0,1]時(shí),|f(x)|≤1恒成立,試求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)試討論函數(shù)的單調(diào)性;
(2)設(shè),記,當(dāng)時(shí),若方程有兩個(gè)不相等的實(shí)根, ,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+an+1=( )n , Sn=a1+3a2+32a3+…+3n﹣1an , 利用類似等比數(shù)列的求和方法,可求得4Sn﹣3nan= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(),焦點(diǎn)到準(zhǔn)線的距離為,過點(diǎn)作直線交拋物線于點(diǎn)(點(diǎn)在第一象限).
(Ⅰ)若點(diǎn)焦點(diǎn)重合,且弦長,求直線的方程;
(Ⅱ)若點(diǎn)關(guān)于軸的對稱點(diǎn)為,直線交x軸于點(diǎn),且,求證:點(diǎn)B的坐標(biāo)是,并求點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中共有8個(gè)球,其中3個(gè)紅球、2個(gè)白球、3個(gè)黑球.若從袋中任取3個(gè)球,則所取3個(gè)球中至多有1個(gè)紅球的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)剛搬遷到新校區(qū),學(xué)?紤],若非住校生上學(xué)路上單程所需時(shí)間人均超過20分鐘,則學(xué)校推遲5分鐘上課.為此,校方隨機(jī)抽取100個(gè)非住校生,調(diào)查其上學(xué)路上單程所需時(shí)間(單位:分鐘),根據(jù)所得數(shù)據(jù)繪制成如下頻率分布直方圖,其中時(shí)間分組為[0,10),[10,20),[20,30),[30,40),[40,50].
(1)求頻率分布直方圖中a的值;
(2)從統(tǒng)計(jì)學(xué)的角度說明學(xué)校是否需要推遲5分鐘上課;
(3)若從樣本單程時(shí)間不小于30分鐘的學(xué)生中,隨機(jī)抽取2人,求恰有一個(gè)學(xué)生的單程時(shí)間落在[40,50]上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)袋子,其中甲袋中裝有編號分別為1、2、3、4的4個(gè)完全相同的球,乙袋中裝有編號分別為2、4、6的3個(gè)完全相同的球.
(Ⅰ)從甲、乙袋子中各取一個(gè)球,求兩球編號之和小于8的概率;
(Ⅱ)從甲袋中取2個(gè)球,從乙袋中取一個(gè)球,求所取出的3個(gè)球中含有編號為2的球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)曲線與相交于兩點(diǎn),求過兩點(diǎn)且面積最小的圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com