(本小題滿分15分)
如圖已知,橢圓的左、右焦點分別為、,過的直線與橢圓相交于A、B兩點。
(Ⅰ)若,且,求橢圓的離心率;
(Ⅱ)若的最大值和最小值。
解:(I)
,       ------  3分
,
                 ------  6分
(II).
①若垂直于軸,則,
                    ------  8分
②若AB與軸不垂直,設直線的斜率為,
則直線的方程為
   消去y得:
,方程有兩個不等的實數(shù)根。設,.
,         ------  10分



                     -------   12分
 ,
                ------  14分
綜合①、②可得:。所以當直線垂直于時,取得最大值;當直線軸重合時,取得最小值                 ------  15分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知定義在的函數(shù).給出下列結(jié)論:
①函數(shù)的值域為;
②關于的方程個不相等的實數(shù)根;
③當時,函數(shù)的圖象與軸圍成的圖形面積為,則;
④存在,使得不等式成立,
其中你認為正確的所有結(jié)論的序號為______________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
已知函數(shù)

(1)若k=2,求方程的解;
(2)若關于x方程上有兩個解,求k取值范圍并證明

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,已知橢圓的離心率為,短軸的一個端點到右焦點的距離為.設直線與橢圓相交于兩點,點關于軸對稱點為
(1)求橢圓的方程;
(2)若以線段為直徑的圓過坐標原點,求直線的方程;
(3)試問:當變化時,直線軸是否交于一個定點?若是,請寫出定點的坐標,并證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)
已知橢圓C的焦點F1(-,0)和F2,0),長軸長6,設直線交橢圓C于A  B兩點,且線段AB的中點坐標是P(-,),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是橢圓上的點.若是橢圓的兩個焦點,則等于(    )
A.4B.5C.8D.10

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知焦點在軸上、中心在原點的橢圓上一點到兩焦點的距離之和為,若該橢圓的離心率,則橢圓的方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在等腰梯形中,,且。設以為焦點且過點的雙曲線的離心率為,以為焦點且過點的橢圓的離心率為,則=          ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

 、是橢圓的兩個焦點,為橢圓上一點,且∠,則
Δ的面積為(   )
A             B           C          D 

查看答案和解析>>

同步練習冊答案