科目: 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,延長AD至點E,使DE=AD,連接BD.
(1)求證:四邊形BCED是平行四邊形;
(2)若DA=DB=2,cosA=,求點B到點E的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】某出租公司有若干輛同一型號的貨車對外出租,每輛貨車的日租金實行淡季、旺季兩種價格標(biāo)準(zhǔn),旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計,淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.
(1)該出租公司這批對外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時,該出租公司的日租金總收入最高?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yx2bxc交x軸于點A,B,點B的坐標(biāo)為(4,0),與y軸于交于點C(0,﹣2).
(1)求此拋物線的解析式;
(2)在拋物線上取點D,若點D的橫坐標(biāo)為5,求點D的坐標(biāo)及∠ADB的度數(shù);
(3)在(2)的條件下,設(shè)拋物線對稱軸交x軸于點H,△ABD的外接圓圓心為M(如圖1),
①求點M的坐標(biāo)及⊙M的半徑;
②過點B作⊙M的切線交于點P(如圖2),設(shè)Q為⊙M上一動點,則在點Q運動過程中的值是否變化?若不變,求出其值;若變化,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】若一次函數(shù)ymxn與反比例函數(shù)y同時經(jīng)過點P(x,y)則稱二次函數(shù)ymx2nxk為一次函數(shù)與反比例函數(shù)的“共享函數(shù)”,稱點P為共享點.
(1)判斷y2x1與y是否存在“共享函數(shù)”,如果存在,請求出“共享點”.如果不存在,請說明理由;
(2)已知:整數(shù)m,n,t滿足條件t<n<8m,并且一次函數(shù)y=(1+n)x+2m+2與反比例函數(shù)y存在“共享函數(shù)”y=(m+t)x2+(10mt)x2020,求m的值.
(3)若一次函數(shù)yxm和反比例函數(shù)y在自變量x的值滿足mxm6的情況下,其“共享函數(shù)”的最小值為3,求其“共享函數(shù)”的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知BD為⊙O的直徑,AB為⊙O的一條弦,過⊙O外一點P作PO⊥AB,垂足為點C,且交⊙O于點N,PO的延長線交⊙O于點M,連接BM、AD、AP.
(1)求證:PM∥AD;
(2)若∠BAP=2∠M,求證:PA是⊙O的切線;
(3)若AD=6,tan∠M=,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】某水果商從批發(fā)市場用8000元購進了大櫻桃和小櫻桃各200千克,大櫻桃的進價比小櫻桃的進價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.
(1)大櫻桃和小櫻桃的進價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?
(2)該水果商第二次仍用8000元錢從批發(fā)市場購進了大櫻桃和小櫻桃各200千克,進價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應(yīng)為多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是長沙九龍倉國際金融中心,位于長沙市黃興路與解放路交會處的東北角,投資160億元人民幣,總建筑面積達(dá)98萬平方米,中心主樓BC高452m,是目前湖南省第一高樓,大樓頂部有一發(fā)射塔AB,已知和BC處于同一水平面上有一高樓DE,在樓DE底端D點測得A的仰角為α,tanα=,在頂端E點測得A的仰角為45°,AE=140m
(1)求兩樓之間的距離CD;
(2)求發(fā)射塔AB的高度.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,矩形CDEF的邊CD在CB上,且5CD=3CB,邊CF在軸上,且CF=2OC-3,反比例函數(shù)y= (k>0)的圖象經(jīng)過點B,E,則點E的坐標(biāo)是____
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,點E是BC的中點,AE與BD交于點P,F是CD上一點,連接AF分別交BD,DE于點M,N,且AF⊥DE,連接PN,則以下結(jié)論中:①F為CD的中點;②3AM=2DE;③tan∠EAF=;④;⑤△PMN∽△DPE,正確的結(jié)論個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c的對稱軸為直線x=﹣,與x軸交于點A和點B(1,0),與y軸交于點C,點D為線段AC的中點,直線BD與拋物線交于另一點E,與y軸交于點F.
(1)求拋物線的解析式;
(2)點P是直線BE上方拋物線上一動點,連接PD、PF,當(dāng)△PDF的面積最大時,在線段BE上找一點G,使得PG﹣EG的值最小,求出PG﹣EG的最小值.
(3)如圖2,點M為拋物線上一點,點N在拋物線的對稱軸上,點K為平面內(nèi)一點,當(dāng)以A、M、N、K為頂點的四邊形是正方形時,請求出點N的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com