科目: 來源: 題型:
【題目】如圖,在正三角形ABC中,點D、E分別在AC、AB上,且,AE=BE,則有( )
A.△AED∽△BEDB.△AED∽△CBD
C.△AED∽△ABDD.△BAD∽△BCD
查看答案和解析>>
科目: 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:求代數(shù)式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代數(shù)式m2+m+4的最小值;
(2)求代數(shù)式4﹣x2+2x的最大值;
(3)某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上建一個長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設(shè)AB=x(m),請問:當(dāng)x取何值時,花園的面積最大?最大面積是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點,AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點G,連結(jié)BE.
(1)求證:△ABE∽△DEF.
(2)若正方形的邊長為4,求BG的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點在線段上,在的同側(cè)作等腰和等腰,與、分別交于點、.對于下列結(jié)論:
①;②;③.其中正確的是( )
A. ①②③ B. ① C. ①② D. ②③
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過點B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,設(shè)點M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時,動點M相應(yīng)的位置記為點M′.寫出點M′的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】“淮南牛肉湯”是安徽知名地方小吃.某分店經(jīng)理發(fā)現(xiàn),當(dāng)每碗牛肉湯的售價為6元時,每天能賣出500碗;當(dāng)每碗牛肉湯的售價每增加0.5元時,每天就會少賣出20碗,設(shè)每碗牛肉湯的售價增加元時,一天的營業(yè)額為元.
(1)求與的函數(shù)關(guān)系式(不要求寫出的取值范圍);
(2)考慮到顧客可接受價格元/碗的范圍是,且為整數(shù),不考慮其他因素,則該分店的牛肉湯每碗多少元時,每天的牛肉湯營業(yè)額最大?最大營業(yè)額是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是 ;
(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標(biāo)是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是反比例函數(shù)y=的圖象,當(dāng)-4≤x≤-1時,-4≤y≤-1.
(1)求該反比例函數(shù)的表達(dá)式;
(2)若點M,N分別在該反比例函數(shù)的兩支圖象上,請指出什么情況下線段MN最短(不需要證明),并注出線段MN長度的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀與計算,請閱讀以下材料,并完成相應(yīng)的問題.
角平分線分線段成比例定理,如圖1,在△ABC中,AD平分∠BAC,則=.下面是這個定理的部分證明過程.
證明:如圖2,過C作CE∥DA.交BA的延長線于E.…
任務(wù):(1)請按照上面的證明思路,寫出該證明的剩余部分;
(2)填空:如圖3,已知Rt△ABC中,AB=3,BC=4,∠ABC=90°,AD平分∠BAC,則△ABD的周長是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com